BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 22684804)

  • 1. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects.
    Karimi-Abdolrezaee S; Billakanti R
    Mol Neurobiol; 2012 Oct; 46(2):251-64. PubMed ID: 22684804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glial scar in spinal cord injury and repair.
    Yuan YM; He C
    Neurosci Bull; 2013 Aug; 29(4):421-35. PubMed ID: 23861090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting epidermal growth factor receptor attenuates reactive astrogliosis and improves functional outcome after spinal cord injury in rats.
    Li ZW; Tang RH; Zhang JP; Tang ZP; Qu WS; Zhu WH; Li JJ; Xie MJ; Tian DS; Wang W
    Neurochem Int; 2011 Jun; 58(7):812-9. PubMed ID: 21402118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial scar survives until the chronic phase by recruiting scar-forming astrocytes after spinal cord injury.
    Tamaru T; Kobayakawa K; Saiwai H; Konno D; Kijima K; Yoshizaki S; Hata K; Iura H; Ono G; Haruta Y; Kitade K; Iida KI; Kawaguchi KI; Matsumoto Y; Kubota K; Maeda T; Okada S; Nakashima Y
    Exp Neurol; 2023 Jan; 359():114264. PubMed ID: 36336030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
    Herrmann JE; Shah RR; Chan AF; Zheng B
    Exp Neurol; 2010 Jun; 223(2):582-98. PubMed ID: 20170651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury.
    Goldshmit Y; Schokoroy Trangle S; Afergan F; Iram T; Pinkas-Kramarski R
    J Neurochem; 2016 Sep; 138(6):845-58. PubMed ID: 27399849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte reactivity and astrogliosis after spinal cord injury.
    Okada S; Hara M; Kobayakawa K; Matsumoto Y; Nakashima Y
    Neurosci Res; 2018 Jan; 126():39-43. PubMed ID: 29054466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration.
    Clifford T; Finkel Z; Rodriguez B; Joseph A; Cai L
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidermal growth factor receptor inhibitor ameliorates excessive astrogliosis and improves the regeneration microenvironment and functional recovery in adult rats following spinal cord injury.
    Li ZW; Li JJ; Wang L; Zhang JP; Wu JJ; Mao XQ; Shi GF; Wang Q; Wang F; Zou J
    J Neuroinflammation; 2014 Apr; 11():71. PubMed ID: 24708754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.
    Herrmann JE; Imura T; Song B; Qi J; Ao Y; Nguyen TK; Korsak RA; Takeda K; Akira S; Sofroniew MV
    J Neurosci; 2008 Jul; 28(28):7231-43. PubMed ID: 18614693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury.
    Perez-Gianmarco L; Kukley M
    Cells; 2023 Jul; 12(14):. PubMed ID: 37508505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury.
    Zhang C; Kang J; Zhang X; Zhang Y; Huang N; Ning B
    Biomed Pharmacother; 2022 Sep; 153():113500. PubMed ID: 36076590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-145 as one negative regulator of astrogliosis.
    Wang CY; Yang SH; Tzeng SF
    Glia; 2015 Feb; 63(2):194-205. PubMed ID: 25139829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new in vitro model of the glial scar inhibits axon growth.
    Wanner IB; Deik A; Torres M; Rosendahl A; Neary JT; Lemmon VP; Bixby JL
    Glia; 2008 Nov; 56(15):1691-709. PubMed ID: 18618667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.
    Gwak YS; Kang J; Unabia GC; Hulsebosch CE
    Exp Neurol; 2012 Apr; 234(2):362-72. PubMed ID: 22036747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy.
    Li X; Li M; Tian L; Chen J; Liu R; Ning B
    Oxid Med Cell Longev; 2020; 2020():9494352. PubMed ID: 32884625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histamine promotes locomotion recovery after spinal cord hemisection via inhibiting astrocytic scar formation.
    Zhao YY; Yuan Y; Chen Y; Jiang L; Liao RJ; Wang L; Zhang XN; Ohtsu H; Hu WW; Chen Z
    CNS Neurosci Ther; 2015 May; 21(5):454-62. PubMed ID: 25620315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.