These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2268489)

  • 1. Absorption of sulfamethoxazole and albumin from the peritoneal cavity.
    Rubin J; Planch A
    ASAIO Trans; 1990; 36(4):834-7. PubMed ID: 2268489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced lymphatic drainage of dialysate from the peritoneal cavity during acute peritonitis in sheep.
    Rodela H; Yuan ZY; Hay JB; Oreopoulos DG; Johnston MG
    Perit Dial Int; 1996; 16(2):163-71. PubMed ID: 9147551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity following IP trimethoprim-sulfamethoxazole in a CAPD patient.
    Stamatakis MK; Sorkin MI; Moss AH
    Perit Dial Int; 1995; 15(2):180-1. PubMed ID: 7612745
    [No Abstract]   [Full Text] [Related]  

  • 4. Trimethoprim-sulfamethoxazole pharmacokinetics during continuous ambulatory peritoneal dialysis (CAPD).
    Walker SE; Paton TW; Churchill DN; Ojo B; Manuel MA; Wright N
    Perit Dial Int; 1989; 9(1):51-5. PubMed ID: 2488182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative description of solute and fluid transport during peritoneal dialysis.
    Heimbürger O; Waniewski J; Werynski A; Lindholm B
    Kidney Int; 1992 May; 41(5):1320-32. PubMed ID: 1614047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size.
    Krediet RT; Struijk DG; Koomen GC; Hoek FJ; Arisz L
    Perit Dial Int; 1990; 10(2):147-52. PubMed ID: 1707684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitation of lymphatic drainage of the peritoneal cavity in sheep: comparison of direct cannulation techniques with indirect methods to estimate lymph flow.
    Tran L; Rodela H; Hay JB; Oreopoulos D; Johnston MG
    Perit Dial Int; 1993; 13(4):270-9. PubMed ID: 8241327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics of transperitoneal insulin transport.
    Widerøe TE; Dahl KJ; Smeby LC; Balstad T; Cruischank-Flakne S; Følling I; Simondsen O; Ahlmen J; Jørstad S
    Nephron; 1996; 74(2):283-90. PubMed ID: 8893142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymphatic removal of dialysate from the peritoneal cavity of anesthetized sheep.
    Abernethy NJ; Chin W; Hay JB; Rodela H; Oreopoulos D; Johnston MG
    Kidney Int; 1991 Aug; 40(2):174-81. PubMed ID: 1942765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis.
    Mactier RA; Khanna R; Twardowski Z; Moore H; Nolph KD
    J Clin Invest; 1987 Nov; 80(5):1311-6. PubMed ID: 3680499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraperitoneal nitric oxide production in patients treated by continuous ambulatory peritonal dialysis.
    Davenport A; Fernando RL; Varghese Z
    Blood Purif; 2004; 22(2):216-23. PubMed ID: 15044821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the disappearance rate for the estimation of lymphatic absorption during CAPD.
    Struijk DG; Imholz AL; Krediet RT; Koomen GC; Arisz L
    Blood Purif; 1992; 10(3-4):182-8. PubMed ID: 1284998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the hydrostatic intraperitoneal pressure and the cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD.
    Abensur H; Romão Júnior JE; Prado EB; Kakehashi E; Sabbaga E; Marcondes M
    Adv Perit Dial; 1993; 9():41-5. PubMed ID: 7692976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of peritonitis on insulin and glucose absorption during peritoneal dialysis in diabetic rats.
    Mactier RA; Moore H; Khanna R; Shah J
    Nephron; 1990; 54(3):240-4. PubMed ID: 2179758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimethoprim-sulfamethoxazole pharmacokinetics during continuous ambulatory peritoneal dialysis.
    Halstenson CE; Blevins RB; Salem NG; Matzke GR
    Clin Nephrol; 1984 Nov; 22(5):239-43. PubMed ID: 6335067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis.
    Joffe P; Henriksen JH
    Nephrol Dial Transplant; 1995; 10(9):1725-32. PubMed ID: 8559496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafiltration failure in continuous ambulatory peritoneal dialysis due to excessive peritoneal cavity lymphatic absorption.
    Mactier RA; Khanna R; Twardowski ZJ; Nolph KD
    Am J Kidney Dis; 1987 Dec; 10(6):461-6. PubMed ID: 3687937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Albumin-based solutions for peritoneal dialysis: investigations with a rat model.
    Park MS; Heimbürger O; Bergström J; Waniewski J; Werynski A; Lindholm B
    Artif Organs; 1995 Apr; 19(4):307-14. PubMed ID: 7598649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-trimoxazole (sulphamethoxazole plus trimethoprim) peritoneal barrier transfer pharmacokinetics.
    Svirbely JE; Pesce AJ; Singh S; O'Flaherty EJ
    Clin Pharmacokinet; 1989 May; 16(5):317-25. PubMed ID: 2787223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transperitoneal movement and pharmacokinetics of cefotiam and cefsulodin in patients on continuous ambulatory peritoneal dialysis.
    Brouard R; Tozer TN; Merdjan H; Guillemin A; Baumelou A
    Clin Nephrol; 1988 Oct; 30(4):197-206. PubMed ID: 3214965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.