These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22684899)

  • 1. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus.
    Sayilgan E; Cakmakci O
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1556-64. PubMed ID: 22684899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.
    Mathur M; Gola D; Panja R; Malik A; Ahammad SZ
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):345-352. PubMed ID: 29039036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Fe-doped Bi
    Dinesh GK; Anandan S; Sivasankar T
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20100-20110. PubMed ID: 26786580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response surface optimization of electrochemical treatment of textile dye wastewater.
    Körbahti BK
    J Hazard Mater; 2007 Jun; 145(1-2):277-86. PubMed ID: 17184910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium.
    Maqbool Z; Hussain S; Ahmad T; Nadeem H; Imran M; Khalid A; Abid M; Martin-Laurent F
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11224-11239. PubMed ID: 26920535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants.
    Yuan Y; Ning XA; Zhang Y; Lai X; Li D; He Z; Chen X
    Ecotoxicol Environ Saf; 2020 Apr; 193():110257. PubMed ID: 32088547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.
    Khalaf MA
    Bioresour Technol; 2008 Sep; 99(14):6631-4. PubMed ID: 18242981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COD and Color Removal from Real Dyeing Wastewater by Ozonation.
    Yang DM; Yuan JM
    Water Environ Res; 2016 May; 88(5):403-7. PubMed ID: 27131304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coal fly ash as adsorptive material for treatment of a real textile effluent: operating parameters and treatment efficiency.
    Zaharia C; Suteu D
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2226-35. PubMed ID: 22814960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.
    Caldera Villalobos M; Peláez Cid AA; Herrera González AM
    J Environ Manage; 2016 Jul; 177():65-73. PubMed ID: 27082258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using modified fish scale waste from
    Niero G; Corrêa AXR; Trierweiler G; Matos AJF; Corrêa R; Bazani HAG; Radetski CM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(11):1083-1090. PubMed ID: 31264911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment of textile dyeing wastewater using an anoxic baffled reactor.
    Kong H; Wu H
    Bioresour Technol; 2008 Nov; 99(16):7886-91. PubMed ID: 18378138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic degradation of brilliant red dye and textile wastewater.
    Martins AF; Wilde ML; da Silveira C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):675-85. PubMed ID: 16779940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of arsenic from aqueous solution using dye waste.
    Nigam S; Vankar PS; Gopal K
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1161-72. PubMed ID: 22661261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical treatment of textile wastewaters: statistical characterization, colour and sulfide removal.
    Pala A
    Indian J Environ Health; 2001 Jul; 43(3):128-34. PubMed ID: 12395514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADMI color and toxicity reductions in raw textile mill effluent and dye mixtures by TiO
    Mounteer AH; Arcanjo GS; Coimbra ECL; da Silva LMM
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4260-4265. PubMed ID: 30069777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast.
    Kumari K; Abraham TE
    Bioresour Technol; 2007 Jul; 98(9):1704-10. PubMed ID: 16997547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile effluent treatment employing yeast biomass and a new nanomagnetic biocomposite.
    Nascimento JR; Bezerra KCH; Martins TD; Carrilho ENVM; Rodrigues CA; Labuto G
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27318-27332. PubMed ID: 33511534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies.
    Fontana KB; Chaves ES; Sanchez JDS; Watanabe ERLR; Pietrobelli JMTA; Lenzi GG
    Ecotoxicol Environ Saf; 2016 Feb; 124():329-336. PubMed ID: 26590694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment.
    Guendouz S; Khellaf N; Zerdaoui M; Ouchefoun M
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3822-9. PubMed ID: 23179220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.