These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22684998)

  • 1. Unusual formation of single-crystal manganese sulfide microboxes co-mediated by the cubic crystal structure and shape.
    Zhang L; Zhou L; Wu HB; Xu R; Lou XW
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7267-70. PubMed ID: 22684998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties.
    Zhang L; Wu HB; Madhavi S; Hng HH; Lou XW
    J Am Chem Soc; 2012 Oct; 134(42):17388-91. PubMed ID: 23057775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries.
    Zhou L; Zhao D; Lou XW
    Adv Mater; 2012 Feb; 24(6):745-8. PubMed ID: 22213232
    [No Abstract]   [Full Text] [Related]  

  • 4. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.
    Kim Y
    ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries.
    Zhang G; Yu L; Wu HB; Hoster HE; Lou XW
    Adv Mater; 2012 Sep; 24(34):4609-13. PubMed ID: 22730075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of size on the rate of mesoporous electrodes for lithium batteries.
    Ren Y; Armstrong AR; Jiao F; Bruce PG
    J Am Chem Soc; 2010 Jan; 132(3):996-1004. PubMed ID: 20039669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.
    Xia Y; Xiao Z; Dou X; Huang H; Lu X; Yan R; Gan Y; Zhu W; Tu J; Zhang W; Tao X
    ACS Nano; 2013 Aug; 7(8):7083-92. PubMed ID: 23888901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn₀.₈₅Fe₀.₁₅PO₄ cathode material for rechargeable lithium-ion batteries.
    Sun YK; Oh SM; Park HK; Scrosati B
    Adv Mater; 2011 Nov; 23(43):5050-4. PubMed ID: 21959794
    [No Abstract]   [Full Text] [Related]  

  • 11. Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries.
    Wang S; Ren Y; Liu G; Xing Y; Zhang S
    Nanoscale; 2014 Apr; 6(7):3508-12. PubMed ID: 24567164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT; Liu Y; Ren Y; Trahey L; Sun Y
    ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries.
    Kim E; Son D; Kim TG; Cho J; Park B; Ryu KS; Chang SH
    Angew Chem Int Ed Engl; 2004 Nov; 43(44):5987-90. PubMed ID: 15547913
    [No Abstract]   [Full Text] [Related]  

  • 14. Hierarchical porous anatase TiO2 derived from a titanium metal-organic framework as a superior anode material for lithium ion batteries.
    Xiu Z; Alfaruqi MH; Gim J; Song J; Kim S; Vu Thi T; Duong PT; Baboo JP; Mathew V; Kim J
    Chem Commun (Camb); 2015 Aug; 51(61):12274-7. PubMed ID: 26137998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries.
    Choi SH; Kang YC
    Small; 2014 Feb; 10(3):474-8. PubMed ID: 23996921
    [No Abstract]   [Full Text] [Related]  

  • 16. TiO2 Microboxes with Controlled Internal Porosity for High-Performance Lithium Storage.
    Gao X; Li G; Xu Y; Hong Z; Liang C; Lin Z
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14331-5. PubMed ID: 26429596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow porous LiMn₂O₄ microcubes as rechargeable lithium battery cathode with high electrochemical performance.
    Wu Y; Wen Z; Feng H; Li J
    Small; 2012 Mar; 8(6):858-62. PubMed ID: 22290782
    [No Abstract]   [Full Text] [Related]  

  • 18. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.
    Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S
    ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of hollow bipyramid β-MnO(2) and its high electrochemical performance for lithium storage.
    Chen WM; Qie L; Shao QG; Yuan LX; Zhang WX; Huang YH
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3047-53. PubMed ID: 22658801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries.
    Wang L; Zheng Y; Wang X; Chen S; Xu F; Zuo L; Wu J; Sun L; Li Z; Hou H; Song Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7117-25. PubMed ID: 24802130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.