BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 22685012)

  • 1. Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.
    Fränzel B; Penkova M; Frese C; Metzler-Nolte N; Andreas Wolters D
    Proteomics; 2012 Aug; 12(14):2319-30. PubMed ID: 22685012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli.
    Marcellini L; Borro M; Gentile G; Rinaldi AC; Stella L; Aimola P; Barra D; Mangoni ML
    FEBS J; 2009 Oct; 276(19):5647-64. PubMed ID: 19725877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of arginine- and tryptophan-rich cyclic hexapeptides with Escherichia coli membranes.
    Junkes C; Wessolowski A; Farnaud S; Evans RW; Good L; Bienert M; Dathe M
    J Pept Sci; 2008 Apr; 14(4):535-43. PubMed ID: 17985396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.
    Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM
    J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.
    Ho YH; Shah P; Chen YW; Chen CS
    Mol Cell Proteomics; 2016 Jun; 15(6):1837-47. PubMed ID: 26902206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-Based Quantitative Proteomic Analysis of the Antimicrobial Mechanism of Peptide F1 against Escherichia coli.
    Miao J; Chen F; Duan S; Gao X; Liu G; Chen Y; Dixon W; Xiao H; Cao Y
    J Agric Food Chem; 2015 Aug; 63(32):7190-7. PubMed ID: 26208148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iTRAQ-coupled two-dimensional liquid chromatography/tandem mass spectrometric analysis of protein profile in Escherichia coli incubated with human neutrophil peptide 1--potential in antimicrobial strategy.
    Zhou YS; Lamrani M; Chan-Park MB; Leong SS; Chang M; Chen WN
    Rapid Commun Mass Spectrom; 2010 Sep; 24(18):2787-90. PubMed ID: 20814987
    [No Abstract]   [Full Text] [Related]  

  • 9. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.
    Kim HK; Chun DS; Kim JS; Yun CH; Lee JH; Hong SK; Kang DK
    Appl Microbiol Biotechnol; 2006 Sep; 72(2):330-8. PubMed ID: 16421719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial activity of short arginine- and tryptophan-rich peptides.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.
    Wu M; Maier E; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomics to evaluate multi drug resistance in Escherichia coli.
    Piras C; Soggiu A; Bonizzi L; Gaviraghi A; Deriu F; De Martino L; Iovane G; Amoresano A; Roncada P
    Mol Biosyst; 2012 Apr; 8(4):1060-7. PubMed ID: 22120138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids.
    Epand RF; Schmitt MA; Gellman SH; Sen A; Auger M; Hughes DW; Epand RM
    Mol Membr Biol; 2005; 22(6):457-69. PubMed ID: 16373318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin.
    Wu G; Wu H; Li L; Fan X; Ding J; Li X; Xi T; Shen Z
    Biochem Biophys Res Commun; 2010 Apr; 395(1):31-5. PubMed ID: 20331979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 2MEGA labeling on membrane proteome analysis using LC-ESI QTOF MS.
    Ji C; Lo A; Marcus S; Li L
    J Proteome Res; 2006 Oct; 5(10):2567-76. PubMed ID: 17022628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer membrane proteome and its regulation networks in response to glucose concentration changes in Escherichia coli.
    Yang JN; Wang C; Guo C; Peng XX; Li H
    Mol Biosyst; 2011 Nov; 7(11):3087-93. PubMed ID: 21850335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.