These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 22685169)

  • 1. Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior.
    Osorio S; Alba R; Nikoloski Z; Kochevenko A; Fernie AR; Giovannoni JJ
    Plant Physiol; 2012 Aug; 159(4):1713-29. PubMed ID: 22685169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene.
    Lee S; Chung EJ; Joung YH; Choi D
    Funct Integr Genomics; 2010 Mar; 10(1):135-46. PubMed ID: 19756789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit.
    Dong T; Chen G; Tian S; Xie Q; Yin W; Zhang Y; Hu Z
    PLoS One; 2014; 9(4):e95559. PubMed ID: 24751940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species.
    Klie S; Osorio S; Tohge T; Drincovich MF; Fait A; Giovannoni JJ; Fernie AR; Nikoloski Z
    Plant Physiol; 2014 Jan; 164(1):55-68. PubMed ID: 24243932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.
    Karlova R; Rosin FM; Busscher-Lange J; Parapunova V; Do PT; Fernie AR; Fraser PD; Baxter C; Angenent GC; de Maagd RA
    Plant Cell; 2011 Mar; 23(3):923-41. PubMed ID: 21398570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA.
    Hou BZ; Li CL; Han YY; Shen YY
    BMC Plant Biol; 2018 Aug; 18(1):162. PubMed ID: 30097017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.
    Pan Y; Bradley G; Pyke K; Ball G; Lu C; Fray R; Marshall A; Jayasuta S; Baxter C; van Wijk R; Boyden L; Cade R; Chapman NH; Fraser PD; Hodgman C; Seymour GB
    Plant Physiol; 2013 Mar; 161(3):1476-85. PubMed ID: 23292788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions.
    Osorio S; Alba R; Damasceno CM; Lopez-Casado G; Lohse M; Zanor MI; Tohge T; Usadel B; Rose JK; Fei Z; Giovannoni JJ; Fernie AR
    Plant Physiol; 2011 Sep; 157(1):405-25. PubMed ID: 21795583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.).
    Sravankumar T; Akash ; Naik N; Kumar R
    Plant Mol Biol; 2018 Nov; 98(4-5):455-469. PubMed ID: 30367324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (
    Hu J; Wang J; Muhammad T; Yang T; Li N; Yang H; Yu Q; Wang B
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.
    Mounet F; Moing A; Garcia V; Petit J; Maucourt M; Deborde C; Bernillon S; Le Gall G; Colquhoun I; Defernez M; Giraudel JL; Rolin D; Rothan C; Lemaire-Chamley M
    Plant Physiol; 2009 Mar; 149(3):1505-28. PubMed ID: 19144766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased ACS Enzyme Dosage Causes Initiation of Climacteric Ethylene Production in Tomato.
    Chen H; Bai S; Kusano M; Ezura H; Wang N
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation.
    Lee JM; Joung JG; McQuinn R; Chung MY; Fei Z; Tieman D; Klee H; Giovannoni J
    Plant J; 2012 Apr; 70(2):191-204. PubMed ID: 22111515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species.
    Kim S; Park M; Yeom SI; Kim YM; Lee JM; Lee HA; Seo E; Choi J; Cheong K; Kim KT; Jung K; Lee GW; Oh SK; Bae C; Kim SB; Lee HY; Kim SY; Kim MS; Kang BC; Jo YD; Yang HB; Jeong HJ; Kang WH; Kwon JK; Shin C; Lim JY; Park JH; Huh JH; Kim JS; Kim BD; Cohen O; Paran I; Suh MC; Lee SB; Kim YK; Shin Y; Noh SJ; Park J; Seo YS; Kwon SY; Kim HA; Park JM; Kim HJ; Choi SB; Bosland PW; Reeves G; Jo SH; Lee BW; Cho HT; Choi HS; Lee MS; Yu Y; Do Choi Y; Park BS; van Deynze A; Ashrafi H; Hill T; Kim WT; Pai HS; Ahn HK; Yeam I; Giovannoni JJ; Rose JK; Sørensen I; Lee SJ; Kim RW; Choi IY; Choi BS; Lim JS; Lee YH; Choi D
    Nat Genet; 2014 Mar; 46(3):270-8. PubMed ID: 24441736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.
    Costa F; Alba R; Schouten H; Soglio V; Gianfranceschi L; Serra S; Musacchi S; Sansavini S; Costa G; Fei Z; Giovannoni J
    BMC Plant Biol; 2010 Oct; 10():229. PubMed ID: 20973957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses.
    Dobritzsch S; Weyhe M; Schubert R; Dindas J; Hause G; Kopka J; Hause B
    BMC Biol; 2015 Apr; 13():28. PubMed ID: 25895675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene.
    Liu K; Kang BC; Jiang H; Moore SL; Li H; Watkins CB; Setter TL; Jahn MM
    Plant Mol Biol; 2005 Jul; 58(4):447-64. PubMed ID: 16021332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening.
    Cao H; Chen J; Yue M; Xu C; Jian W; Liu Y; Song B; Gao Y; Cheng Y; Li Z
    Plant J; 2020 Dec; 104(6):1568-1581. PubMed ID: 33048422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato.
    Liu M; Gomes BL; Mila I; Purgatto E; Peres LE; Frasse P; Maza E; Zouine M; Roustan JP; Bouzayen M; Pirrello J
    Plant Physiol; 2016 Mar; 170(3):1732-44. PubMed ID: 26739234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.
    Bemer M; Karlova R; Ballester AR; Tikunov YM; Bovy AG; Wolters-Arts M; Rossetto Pde B; Angenent GC; de Maagd RA
    Plant Cell; 2012 Nov; 24(11):4437-51. PubMed ID: 23136376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.