These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 22685169)

  • 21. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening.
    Ma N; Feng H; Meng X; Li D; Yang D; Wu C; Meng Q
    BMC Plant Biol; 2014 Dec; 14():351. PubMed ID: 25491370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Metabolic Regulation by a Chromosome Segment from a Wild Relative During Fruit Development in a Tomato Introgression Line, IL8-3.
    Ikeda H; Shibuya T; Imanishi S; Aso H; Nishiyama M; Kanayama Y
    Plant Cell Physiol; 2016 Jun; 57(6):1257-70. PubMed ID: 27076398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior.
    Carrari F; Baxter C; Usadel B; Urbanczyk-Wochniak E; Zanor MI; Nunes-Nesi A; Nikiforova V; Centero D; Ratzka A; Pauly M; Sweetlove LJ; Fernie AR
    Plant Physiol; 2006 Dec; 142(4):1380-96. PubMed ID: 17071647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses.
    Fujisawa M; Shima Y; Higuchi N; Nakano T; Koyama Y; Kasumi T; Ito Y
    Planta; 2012 Jun; 235(6):1107-22. PubMed ID: 22160566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening.
    Razo-Mendivil FG; Hernandez-Godínez F; Hayano-Kanashiro C; Martínez O
    PLoS One; 2021; 16(8):e0256319. PubMed ID: 34428253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissection of Metabolome and Transcriptome-Insights into Capsaicin and Flavonoid Accumulation in Two Typical Yunnan Xiaomila Fruits.
    Hu H; Du L; Zhang R; Zhong Q; Liu F; Li W; Gui M
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance.
    Su L; Diretto G; Purgatto E; Danoun S; Zouine M; Li Z; Roustan JP; Bouzayen M; Giuliano G; Chervin C
    BMC Plant Biol; 2015 May; 15():114. PubMed ID: 25953041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development.
    Alba R; Payton P; Fei Z; McQuinn R; Debbie P; Martin GB; Tanksley SD; Giovannoni JJ
    Plant Cell; 2005 Nov; 17(11):2954-65. PubMed ID: 16243903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitro-oxidative metabolism during fruit ripening.
    Corpas FJ; Freschi L; Rodríguez-Ruiz M; Mioto PT; González-Gordo S; Palma JM
    J Exp Bot; 2018 Jun; 69(14):3449-3463. PubMed ID: 29304200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development.
    Liu Z; Lv J; Zhang Z; Li H; Yang B; Chen W; Dai X; Li X; Yang S; Liu L; Ou L; Ma Y; Zou X
    J Proteome Res; 2019 Mar; 18(3):982-994. PubMed ID: 30650966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening.
    Nakatsuka A; Murachi S; Okunishi H; Shiomi S; Nakano R; Kubo Y; Inaba A
    Plant Physiol; 1998 Dec; 118(4):1295-305. PubMed ID: 9847103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening.
    Van de Poel B; Bulens I; Markoula A; Hertog ML; Dreesen R; Wirtz M; Vandoninck S; Oppermann Y; Keulemans J; Hell R; Waelkens E; De Proft MP; Sauter M; Nicolai BM; Geeraerd AH
    Plant Physiol; 2012 Nov; 160(3):1498-514. PubMed ID: 22977280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit.
    Zuo J; Grierson D; Courtney LT; Wang Y; Gao L; Zhao X; Zhu B; Luo Y; Wang Q; Giovannoni JJ
    Plant J; 2020 Aug; 103(3):980-994. PubMed ID: 32314448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper.
    Paran I; van der Knaap E
    J Exp Bot; 2007; 58(14):3841-52. PubMed ID: 18037678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of wild tomato introgression lines elucidates the genetic basis of transcriptome and metabolome variation underlying fruit traits and pathogen response.
    Szymański J; Bocobza S; Panda S; Sonawane P; Cárdenas PD; Lashbrooke J; Kamble A; Shahaf N; Meir S; Bovy A; Beekwilder J; Tikunov Y; Romero de la Fuente I; Zamir D; Rogachev I; Aharoni A
    Nat Genet; 2020 Oct; 52(10):1111-1121. PubMed ID: 32989321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes provides insight into LeMADS-RIN-regulated ethylene-dependent as well as ethylene-independent aspects of ripening in tomato.
    Kumar R; Sharma MK; Kapoor S; Tyagi AK; Sharma AK
    Mol Genet Genomics; 2012 Mar; 287(3):189-203. PubMed ID: 22212279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional Validation of Phytoene Synthase and Lycopene ε-Cyclase Genes for High Lycopene Content in Autumn Olive Fruit (
    Wang T; Hou Y; Hu H; Wang C; Zhang W; Li H; Cheng Z; Yang L
    J Agric Food Chem; 2020 Oct; 68(41):11503-11511. PubMed ID: 32936623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites.
    Sacco A; Raiola A; Calafiore R; Barone A; Rigano MM
    BMC Genomics; 2019 Jan; 20(1):43. PubMed ID: 30646856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of the chili pepper transcriptome during fruit development.
    Martínez-López LA; Ochoa-Alejo N; Martínez O
    BMC Genomics; 2014 Feb; 15():143. PubMed ID: 24555715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection.
    Ko MK; Jeon WB; Kim KS; Lee HH; Seo HH; Kim YS; Oh BJ
    Plant Mol Biol; 2005 Jul; 58(4):529-41. PubMed ID: 16021337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.