These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22685345)

  • 1. Guided-mode-resonance-coupled plasmonic-active SiO(2) nanotubes for surface enhanced Raman spectroscopy.
    Xu X; Hasan D; Wang L; Chakravarty S; Chen RT; Fan DL; Wang AX
    Appl Phys Lett; 2012 May; 100(19):191114-1911145. PubMed ID: 22685345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided-Mode Resonance Grating with Self-Assembled Silver Nanoparticles for Surface-Enhanced Raman Scattering Spectroscopy.
    Yang J; Ren F; Chong X; Fan D; Chakravarty S; Wang Z; Chen RT; Wang AX
    Photonics; 2014 Dec; 1(4):380-389. PubMed ID: 26958546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings.
    Seçkin S; Singh P; Jaiswal A; König TAF
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cubic Silver Nanoparticles Fixed on TiO
    Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering induced by the coupling of the guided mode with localized surface plasmon resonances.
    Wu S; Shen Y; Jin C
    Nanoscale; 2019 Aug; 11(30):14164-14173. PubMed ID: 31265044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.
    Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G
    Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications.
    Bauman SJ; Brawley ZT; Darweesh AA; Herzog JB
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy.
    Zhou Y; Li X; Ren X; Yang L; Liu J
    Analyst; 2014 Oct; 139(19):4799-805. PubMed ID: 24975281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and SERS performance of silver nanoarrays by inkjet printing silver nanoparticles ink on the gratings of compact disc recordable.
    Li L; Yang S; Duan J; Huang L; Xiao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117598. PubMed ID: 31605939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-exciton coupling for nanophotonic sensing on chip.
    Dong J; Cao Y; Han Q; Wang Y; Qi M; Zhang W; Qiao L; Qi J; Gao W
    Opt Express; 2020 Jul; 28(14):20817-20829. PubMed ID: 32680134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering.
    Zhao F; Wang X; Zhang Y; Lu X; Xie H; Xu B; Ye W; Ni W
    Nanotechnology; 2020 May; 31(29):295601. PubMed ID: 32217813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering.
    Sun AY; Lee YC; Chang SW; Chen SL; Wang HC; Wan D; Chen HL
    Anal Chem; 2021 Mar; 93(9):4299-4307. PubMed ID: 33635644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Scattering (SERS) Studies of Disc-on-Pillar (DOP) Arrays: Contrasting Enhancement Factor with Analytical Performance.
    Velez RA; Lavrik NV; Kravchenko II; Sepaniak MJ; Jesus MA
    Appl Spectrosc; 2019 Jun; 73(6):665-677. PubMed ID: 30990053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots.
    Dzhagan V; Mazur N; Kapush O; Skoryk M; Pirko Y; Yemets A; Dzhahan V; Shepeliavyi P; Valakh M; Yukhymchuk V
    ACS Omega; 2024 Jan; 9(4):4819-4830. PubMed ID: 38313516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.