These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 22685415)

  • 1. Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae.
    North M; Steffen J; Loguinov AV; Zimmerman GR; Vulpe CD; Eide DJ
    PLoS Genet; 2012; 8(6):e1002699. PubMed ID: 22685415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the Zrg17 zinc transporter of the yeast secretory pathway.
    Wu YH; Frey AG; Eide DJ
    Biochem J; 2011 Apr; 435(1):259-66. PubMed ID: 21250939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae.
    Wu CY; Bird AJ; Chung LM; Newton MA; Winge DR; Eide DJ
    BMC Genomics; 2008 Aug; 9():370. PubMed ID: 18673560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of two activation domains in Zap1 in the response to zinc deficiency in Saccharomyces cerevisiae.
    Frey AG; Eide DJ
    J Biol Chem; 2011 Feb; 286(8):6844-54. PubMed ID: 21177862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth.
    MacDiarmid CW; Taggart J; Jeong J; Kerdsomboon K; Eide DJ
    J Biol Chem; 2016 Sep; 291(36):18880-96. PubMed ID: 27432887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae.
    Jo WJ; Kim JH; Oh E; Jaramillo D; Holman P; Loguinov AV; Arkin AP; Nislow C; Giaever G; Vulpe CD
    BMC Genomics; 2009 Mar; 10():130. PubMed ID: 19321002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in transcription start sites of Zap1-regulated genes during zinc deficiency: Implications for HNT1 gene regulation.
    Tatip S; Taggart J; Wang Y; MacDiarmid CW; Eide DJ
    Mol Microbiol; 2020 Jan; 113(1):285-296. PubMed ID: 31692084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.
    Frey AG; Bird AJ; Evans-Galea MV; Blankman E; Winge DR; Eide DJ
    PLoS One; 2011; 6(7):e22535. PubMed ID: 21799889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae.
    Eide DJ
    J Biol Chem; 2009 Jul; 284(28):18565-9. PubMed ID: 19363031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.
    Milner MJ; Pence NS; Liu J; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):271-80. PubMed ID: 24433538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae.
    Miyabe S; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2000 Oct; 276(3):879-84. PubMed ID: 11027563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status.
    Herbig A; Bird AJ; Swierczek S; McCall K; Mooney M; Wu CY; Winge DR; Eide DJ
    Mol Microbiol; 2005 Aug; 57(3):834-46. PubMed ID: 16045625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.
    Wu CY; Roje S; Sandoval FJ; Bird AJ; Winge DR; Eide DJ
    J Biol Chem; 2009 Oct; 284(40):27544-56. PubMed ID: 19656949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Zap1 transcriptional activator negatively regulates translation of the RTC4 mRNA through the use of alternative 5' transcript leaders.
    Bird AJ; Labbé S
    Mol Microbiol; 2017 Dec; 106(5):673-677. PubMed ID: 28971534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements.
    Zhao H; Butler E; Rodgers J; Spizzo T; Duesterhoeft S; Eide D
    J Biol Chem; 1998 Oct; 273(44):28713-20. PubMed ID: 9786867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of zinc deprivation on the lipid metabolism of budding yeast.
    Singh N; Yadav KK; Rajasekharan R
    Curr Genet; 2017 Dec; 63(6):977-982. PubMed ID: 28500379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
    Wang Z; Feng LS; Matskevich V; Venkataraman K; Parasuram P; Laity JH
    J Mol Biol; 2006 Apr; 357(4):1167-83. PubMed ID: 16483601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.