These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22685583)

  • 21. Potentials toward genetic engineering of drought-tolerant soybean.
    Thao NP; Tran LS
    Crit Rev Biotechnol; 2012 Dec; 32(4):349-62. PubMed ID: 22181694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.
    Hussain RM; Ali M; Feng X; Li X
    BMC Plant Biol; 2017 Feb; 17(1):55. PubMed ID: 28241800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco.
    Valente MA; Faria JA; Soares-Ramos JR; Reis PA; Pinheiro GL; Piovesan ND; Morais AT; Menezes CC; Cano MA; Fietto LG; Loureiro ME; Aragão FJ; Fontes EP
    J Exp Bot; 2009; 60(2):533-46. PubMed ID: 19052255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive transcriptome profiling of soybean leaves in response to simulated acid rain.
    Yang L; Xu Y; Zhang R; Wang X; Yang C
    Ecotoxicol Environ Saf; 2018 Aug; 158():18-27. PubMed ID: 29656160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress.
    Sheteiwy MS; Ali DFI; Xiong YC; Brestic M; Skalicky M; Hamoud YA; Ulhassan Z; Shaghaleh H; AbdElgawad H; Farooq M; Sharma A; El-Sawah AM
    BMC Plant Biol; 2021 Apr; 21(1):195. PubMed ID: 33888066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small RNA profiles in soybean primary root tips under water deficit.
    Zheng Y; Hivrale V; Zhang X; Valliyodan B; Lelandais-Brière C; Farmer AD; May GD; Crespi M; Nguyen HT; Sunkar R
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):126. PubMed ID: 28105955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species.
    Singh R; Pandey N; Kumar A; Shirke PA
    Protoplasma; 2016 Jan; 253(1):163-74. PubMed ID: 25802007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes.
    Tripathi P; Rabara RC; Reese RN; Miller MA; Rohila JS; Subramanian S; Shen QJ; Morandi D; Bücking H; Shulaev V; Rushton PJ
    BMC Genomics; 2016 Feb; 17():102. PubMed ID: 26861168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of new up-regulated genes under drought stress in soybean nodules.
    Clement M; Lambert A; Herouart D; Boncompagni E
    Gene; 2008 Dec; 426(1-2):15-22. PubMed ID: 18817859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean.
    Gil-Quintana E; Larrainzar E; Seminario A; Díaz-Leal JL; Alamillo JM; Pineda M; Arrese-Igor C; Wienkoop S; González EM
    J Exp Bot; 2013 May; 64(8):2171-82. PubMed ID: 23580751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drought tolerance response of high-yielding soybean varieties to mild drought: physiological and photochemical adjustments.
    Buezo J; Sanz-Saez Á; Moran JF; Soba D; Aranjuelo I; Esteban R
    Physiol Plant; 2019 May; 166(1):88-104. PubMed ID: 30381841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs.
    Khan N; Bano A; Rahman MA; Guo J; Kang Z; Babar MA
    Sci Rep; 2019 Feb; 9(1):2097. PubMed ID: 30765803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.
    Weber RL; Wiebke-Strohm B; Bredemeier C; Margis-Pinheiro M; de Brito GG; Rechenmacher C; Bertagnolli PF; de Sá ME; Campos Mde A; de Amorim RM; Beneventi MA; Margis R; Grossi-de-Sa MF; Bodanese-Zanettini MH
    BMC Plant Biol; 2014 Dec; 14():343. PubMed ID: 25492565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures.
    Lardi M; Murset V; Fischer HM; Mesa S; Ahrens CH; Zamboni N; Pessi G
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
    Song L; Prince S; Valliyodan B; Joshi T; Maldonado dos Santos JV; Wang J; Lin L; Wan J; Wang Y; Xu D; Nguyen HT
    BMC Genomics; 2016 Jan; 17():57. PubMed ID: 26769043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and molecular approaches to improve drought resistance in soybean.
    Manavalan LP; Guttikonda SK; Tran LS; Nguyen HT
    Plant Cell Physiol; 2009 Jul; 50(7):1260-76. PubMed ID: 19546148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule.
    Clement M; Boncompagni E; de Almeida-Engler J; Herouart D
    Plant Cell Environ; 2006 Sep; 29(9):1841-52. PubMed ID: 16913873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.