BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22685715)

  • 1. Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate 1-decarboxylase: the structural basis of its substrate selectivity.
    Liu P; Ding H; Christensen BM; Li J
    Insect Biochem Mol Biol; 2012 Jun; 42(6):396-403. PubMed ID: 22685715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.
    Liu P; Torrens-Spence MP; Ding H; Christensen BM; Li J
    Amino Acids; 2013 Feb; 44(2):391-404. PubMed ID: 22718265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cysteine sulfinic acid decarboxylase from Tribolium castaneum and its application in the production of β-alanine.
    Liu Z; Zheng W; Ye W; Wang C; Gao Y; Cui W; Zhou Z
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9443-9453. PubMed ID: 31696283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glutamate decarboxylase-like protein 1 (GADL1) in taurine biosynthesis.
    Liu P; Ge X; Ding H; Jiang H; Christensen BM; Li J
    J Biol Chem; 2012 Nov; 287(49):40898-906. PubMed ID: 23038267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes.
    Richardson G; Ding H; Rocheleau T; Mayhew G; Reddy E; Han Q; Christensen BM; Li J
    Mol Biol Rep; 2010 Oct; 37(7):3199-205. PubMed ID: 19842059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.
    Shen Y; Zhao L; Li Y; Zhang L; Shi G
    Biotechnol Lett; 2014 Aug; 36(8):1681-6. PubMed ID: 24737081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research progress of L-aspartate-α-decarboxylase and its isoenzyme in the β-alanine synthesis.
    Hu ZC; Tian YH; Yang JL; Zhu YN; Zhou HY; Zheng YG; Liu ZQ
    World J Microbiol Biotechnol; 2022 Dec; 39(2):42. PubMed ID: 36513951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.
    Tomita H; Yokooji Y; Ishibashi T; Imanaka T; Atomi H
    J Bacteriol; 2014 Mar; 196(6):1222-30. PubMed ID: 24415726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti.
    Cooper DM; Pio F; Thi EP; Theilmann D; Lowenberger C
    Insect Biochem Mol Biol; 2007 Jun; 37(6):559-69. PubMed ID: 17517333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of β-alanine through co-expressing two different subtypes of L-aspartate-α-decarboxylase.
    Wang L; Piao X; Cui S; Hu M; Tao Y
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):465-474. PubMed ID: 32524454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel, Easy Assay Method for Human Cysteine Sulfinic Acid Decarboxylase.
    Tramonti A; Contestabile R; Florio R; Nardella C; Barile A; Di Salvo ML
    Life (Basel); 2021 May; 11(5):. PubMed ID: 34068845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treponema denticola cystalysin catalyzes beta-desulfination of L-cysteine sulfinic acid and beta-decarboxylation of L-aspartate and oxalacetate.
    Cellini B; Bertoldi M; Borri Voltattorni C
    FEBS Lett; 2003 Nov; 554(3):306-10. PubMed ID: 14623084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of two arylalkylamine N-acetyltransferases in the yellow fever mosquito, Aedes aegypti.
    Mehere P; Han Q; Christensen BM; Li J
    Insect Biochem Mol Biol; 2011 Sep; 41(9):707-14. PubMed ID: 21645618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a dual-fluorescence reporter system for high-throughput screening of L-aspartate-α-decarboxylase.
    Fei M; Mao X; Chen Y; Lu Y; Wang L; Yang J; Qiu J; Sun D
    Acta Biochim Biophys Sin (Shanghai); 2020 Dec; 52(12):1420-1426. PubMed ID: 33313655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate inactivation of bacterial L-aspartate α-decarboxylase from Corynebacterium jeikeium K411 and improvement of molecular stability by saturation mutagenesis.
    Mo Q; Mao A; Li Y; Shi G
    World J Microbiol Biotechnol; 2019 Mar; 35(4):62. PubMed ID: 30923994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between lysine 102 and aspartate 338 in the insect amino acid cotransporter KAAT1.
    Castagna M; Soragna A; Mari SA; Santacroce M; Betté S; Mandela PG; Rudnick G; Peres A; Sacchi VF
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1286-95. PubMed ID: 17626242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunocytochemical and autoradiographic methods to demonstrate the coexistence of neuroactive substance: cerebellar Purkinje cells have glutamic acid decarboxylase, cysteine sulfinic acid decarboxylase, and motilin immunoreactivity.
    Chan-Palay V
    Acta Morphol Hung; 1983; 31(1-3):193-212. PubMed ID: 6312771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colocalization of taurine- and cysteine sulfinic acid decarboxylase-like immunoreactivity in the hippocampus of the rat.
    Magnusson KR; Clements JR; Wu JY; Beitz AJ
    Synapse; 1989; 4(1):55-69. PubMed ID: 2772839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate alpha-decarboxylase.
    Lee BI; Suh SW
    J Mol Biol; 2004 Jun; 340(1):1-7. PubMed ID: 15184017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.
    Han Q; Ding H; Robinson H; Christensen BM; Li J
    PLoS One; 2010 Jan; 5(1):e8826. PubMed ID: 20098687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.