These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22686014)

  • 41. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2.
    Song JH; Jeon CO; Choi MH; Yoon SC; Park W
    J Microbiol Biotechnol; 2008 Aug; 18(8):1408-15. PubMed ID: 18756101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.
    Ceyhan N; Ozdemir G
    Biofouling; 2008; 24(2):129-35. PubMed ID: 18256966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic Adaptations Help Rhodococcus erythropolis Cells during the Degradation of Paraffin Wax.
    Rodrigues CJC; de Carvalho CCCR
    Biotechnol J; 2019 Aug; 14(8):e1800598. PubMed ID: 31125157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effect of antibiotic AL-87 on the fatty acid composition of microorganisms in different taxonomic groups].
    Churkina LN; Vasiurenko ZP; Smirnov VV; Kiprianova EA; Garagulia AD
    Antibiotiki; 1983 Jul; 28(7):489-94. PubMed ID: 6354072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of aluminium and copper on biofilm development of Pseudomonas pseudoalcaligenes KF707 and P. fluorescens as a function of different media compositions.
    Booth SC; George IF; Zannoni D; Cappelletti M; Duggan GE; Ceri H; Turner RJ
    Metallomics; 2013 Jun; 5(6):723-35. PubMed ID: 23604327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells.
    Dubois-Brissonnet F
    Methods Mol Biol; 2019; 1918():165-170. PubMed ID: 30580407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids.
    de Carvalho CC; Marques MP; Hachicho N; Heipieper HJ
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5599-606. PubMed ID: 24599310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fatty acid composition of selected prosthecate bacteria.
    Carter RN; Schmidt JM
    Arch Microbiol; 1976 Oct; 110(1):91-4. PubMed ID: 1015941
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fatty Acids Composition of Microbacterium Genus Bacteria – Destructors of Oil Hydrocarbons.
    Gorshkova OG; Korotaeva NV; Ostapchuk AM; Voliuvach OV; Gudzenko TV
    Mikrobiol Z; 2016; 78(5):92-8. PubMed ID: 30141872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms.
    Heinzelmann SM; Chivall D; M'Boule D; Sinke-Schoen D; Villanueva L; Damsté JS; Schouten S; van der Meer MT
    FEMS Microbiol Lett; 2015 May; 362(10):. PubMed ID: 25883110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preventing biofilm formation: promoting cell separation with terpenes.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2007 Sep; 61(3):406-13. PubMed ID: 17617221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli.
    Rizzo AF; Korkeala H; Mononen I
    Appl Environ Microbiol; 1987 Dec; 53(12):2883-8. PubMed ID: 3435147
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Studies to investigate the ecological importance of the mass development of Hydrodictyon reticulatum in infiltration basins for drinking water. III. Identification of the active components by the use of spectroscopic methods and gas chromatography (author's transl)].
    Olfers-Weber R; Mihm U
    Zentralbl Bakteriol B; 1979 Oct; 169(3-4):287-94. PubMed ID: 120652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Hydrocarbons and fatty acid methyl esters in bacterial biomass before and after physicochemical treatment].
    Botvinko IV; Popova OV; Stroeva AR; Shuvalov SA; Vinokurov VA
    Mikrobiologiia; 2014; 83(2):152-9. PubMed ID: 25423719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fatty acid composition of Simonsiella strains.
    Jenkins CL; Kuhn DA; Daly KR
    Arch Microbiol; 1977 Jun; 113(3):209-13. PubMed ID: 560178
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellular fatty acid composition of Pseudomonas paucimobilis and groups IIk-2, Ve-1, and Ve-2.
    Dees SB; Moss CW; Weaver RE; Hollis D
    J Clin Microbiol; 1979 Aug; 10(2):206-9. PubMed ID: 511989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical Composition fo the Glue From Appressoria of Magnaporthe grisea.
    Ebata Y; Yamamoto H; Uchiyama T
    Biosci Biotechnol Biochem; 1998; 62(4):672-4. PubMed ID: 27392554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [For the metabolism of acid-fast bacteria; About the behavior of unsaturated fatty acids].
    FRANKE W; LEE LT; KIBAT D
    Biochem Z; 1949; 319(2):263-82. PubMed ID: 18124902
    [No Abstract]   [Full Text] [Related]  

  • 59. Antisporulation factors in complex organic media. II. Saturated fatty acids as antisporulation factors.
    HARDWICK WA; GUIRARD B; FOSTER JW
    J Bacteriol; 1951 Feb; 61(2):145-51. PubMed ID: 14824091
    [No Abstract]   [Full Text] [Related]  

  • 60. Lack of Capsular Exopolymer Effects on the Biodegradation of Organic Compounds by Pseudomonas sp. Strains JS1 and JS150.
    Fuller ME; Scow KM
    Microb Ecol; 1997 Nov; 34(3):248-53. PubMed ID: 9337420
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.