BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22686107)

  • 1. Disentangling dynamic changes of multiple cellular components during the yeast cell cycle by in vivo multivariate Raman imaging.
    Huang CK; Ando M; Hamaguchi HO; Shigeto S
    Anal Chem; 2012 Jul; 84(13):5661-8. PubMed ID: 22686107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.
    Ando M; Hamaguchi HO
    J Biomed Opt; 2014 Jan; 19(1):011016. PubMed ID: 24108582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy.
    Huang YS; Karashima T; Yamamoto M; Hamaguchi HO
    Biochemistry; 2005 Aug; 44(30):10009-19. PubMed ID: 16042377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells.
    Noothalapati Venkata HN; Shigeto S
    Chem Biol; 2012 Nov; 19(11):1373-80. PubMed ID: 23177192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo multimode Raman imaging reveals concerted molecular composition and distribution changes during yeast cell cycle.
    Huang CK; Hamaguchi HO; Shigeto S
    Chem Commun (Camb); 2011 Sep; 47(33):9423-5. PubMed ID: 21776497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo probing of the temperature responses of intracellular biomolecules in yeast cells by label-free Raman microspectroscopy.
    Chiu YF; Huang CK; Shigeto S
    Chembiochem; 2013 May; 14(8):1001-5. PubMed ID: 23630156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based biological Raman spectral imaging.
    Shafer-Peltier KE; Haka AS; Motz JT; Fitzmaurice M; Dasari RR; Feld MS
    J Cell Biochem Suppl; 2002; 39():125-37. PubMed ID: 12552612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectral imaging of single living cancer cells: a preliminary study.
    Draux F; Jeannesson P; Beljebbar A; Tfayli A; Fourre N; Manfait M; Sulé-Suso J; Sockalingum GD
    Analyst; 2009 Mar; 134(3):542-8. PubMed ID: 19238292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy.
    Swain RJ; Jell G; Stevens MM
    J Cell Biochem; 2008 Jul; 104(4):1427-38. PubMed ID: 18348254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency.
    Matthews Q; Jirasek A; Lum J; Duan X; Brolo AG
    Appl Spectrosc; 2010 Aug; 64(8):871-87. PubMed ID: 20719050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets.
    Miljković M; Chernenko T; Romeo MJ; Bird B; Matthäus C; Diem M
    Analyst; 2010 Aug; 135(8):2002-13. PubMed ID: 20526496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman microspectroscopy for non-invasive biochemical analysis of single cells.
    Swain RJ; Stevens MM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):544-9. PubMed ID: 17511648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multi-variate methods for data analysis.
    Bonifacio A; Beleites C; Vittur F; Marsich E; Semeraro S; Paoletti S; Sergo V
    Analyst; 2010 Dec; 135(12):3193-204. PubMed ID: 20967391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis.
    Noothalapati H; Shigeto S
    Anal Chem; 2014 Aug; 86(15):7828-34. PubMed ID: 24975289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal spectral imaging in tissue with contrast provided by Raman vibrational signatures.
    Whitley A; Adar F
    Cytometry A; 2006 Aug; 69(8):880-7. PubMed ID: 16969801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-polarization Raman spectral imaging to extract overlapping molecular fingerprints of living cells.
    Chiu LD; Palonpon AF; Smith NI; Kawata S; Sodeoka M; Fujita K
    J Biophotonics; 2015 Jul; 8(7):546-54. PubMed ID: 24733812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status.
    Ghita A; Pascut FC; Mather M; Sottile V; Notingher I
    Anal Chem; 2012 Apr; 84(7):3155-62. PubMed ID: 22436054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal Raman microspectral imaging (CRMI) of murine stem cell colonies.
    Zuser E; Chernenko T; Newmark J; Miljković M; Diem M
    Analyst; 2010 Dec; 135(12):3030-3. PubMed ID: 20944846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-Raman analysis and AFM imaging of Acidithiobacillus ferrooxidans biofilm grown on uranium ore.
    Pradhan N; Pradhan SK; Nayak BB; Mukherjee PS; Sukla LB; Mishra BK
    Res Microbiol; 2008; 159(7-8):557-61. PubMed ID: 18640267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Time- and space resolved Raman spectroscopy of single living yeast cells].
    Huang YS; Hamaguchi HO
    Tanpakushitsu Kakusan Koso; 2006 Mar; 51(3):262-7. PubMed ID: 16528985
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.