These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 22686275)
1. Hydrolyzed caseinomacropeptide conjugated galactooligosaccharides support the growth and enhance the bile tolerance in Lactobacillus strains. Muthaiyan A; Hernandez-Hernandez O; Moreno FJ; Sanz ML; Ricke SC J Agric Food Chem; 2012 Jul; 60(27):6839-45. PubMed ID: 22686275 [TBL] [Abstract][Full Text] [Related]
2. Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Hernandez-Hernandez O; Muthaiyan A; Moreno FJ; Montilla A; Sanz ML; Ricke SC Food Microbiol; 2012 Jun; 30(2):355-61. PubMed ID: 22365348 [TBL] [Abstract][Full Text] [Related]
3. In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates. Hernandez-Hernandez O; Sanz ML; Kolida S; Rastall RA; Moreno FJ J Agric Food Chem; 2011 Nov; 59(22):11949-55. PubMed ID: 22004447 [TBL] [Abstract][Full Text] [Related]
4. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. Maathuis AJ; van den Heuvel EG; Schoterman MH; Venema K J Nutr; 2012 Jul; 142(7):1205-12. PubMed ID: 22623395 [TBL] [Abstract][Full Text] [Related]
5. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β-d-glucan oligosaccharides in Lactobacillus species. Shi Y; Liu J; Yan Q; You X; Yang S; Jiang Z Carbohydr Polym; 2018 May; 188():17-26. PubMed ID: 29525154 [TBL] [Abstract][Full Text] [Related]
6. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. Schwab C; Gänzle M FEMS Microbiol Lett; 2011 Feb; 315(2):141-8. PubMed ID: 21175746 [TBL] [Abstract][Full Text] [Related]
7. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Blaiotta G; La Gatta B; Di Capua M; Di Luccia A; Coppola R; Aponte M Food Microbiol; 2013 Dec; 36(2):161-9. PubMed ID: 24010594 [TBL] [Abstract][Full Text] [Related]
8. Effect of milk protein glycation and gastrointestinal digestion on the growth of bifidobacteria and lactic acid bacteria. Corzo-Martínez M; Ávila M; Moreno FJ; Requena T; Villamiel M Int J Food Microbiol; 2012 Feb; 153(3):420-7. PubMed ID: 22225833 [TBL] [Abstract][Full Text] [Related]
9. Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Böger M; van Leeuwen SS; Lammerts van Bueren A; Dijkhuizen L J Agric Food Chem; 2019 Dec; 67(50):13969-13977. PubMed ID: 31747272 [TBL] [Abstract][Full Text] [Related]
10. Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides. Sarabia-Sainz HM; Armenta-Ruiz C; Sarabia-Sainz JA; Guzmán-Partida AM; Ledesma-Osuna AI; Vázquez-Moreno L; Ramos-Clamont Montfort G Food Chem; 2013 Dec; 141(3):2727-34. PubMed ID: 23871017 [TBL] [Abstract][Full Text] [Related]
11. Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Gobinath D; Prapulla SG Biotechnol Lett; 2014 Jan; 36(1):153-7. PubMed ID: 24078132 [TBL] [Abstract][Full Text] [Related]
12. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Mäkeläinen H; Saarinen M; Stowell J; Rautonen N; Ouwehand AC Benef Microbes; 2010 Jun; 1(2):139-48. PubMed ID: 21840802 [TBL] [Abstract][Full Text] [Related]
13. Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Cardelle-Cobas A; Corzo N; Olano A; Peláez C; Requena T; Ávila M Int J Food Microbiol; 2011 Sep; 149(1):81-7. PubMed ID: 21700354 [TBL] [Abstract][Full Text] [Related]
14. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria. Endo A; Nakamura S; Konishi K; Nakagawa J; Tochio T Int J Food Sci Nutr; 2016; 67(2):125-32. PubMed ID: 26888650 [TBL] [Abstract][Full Text] [Related]
15. Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Kondepudi KK; Ambalam P; Nilsson I; Wadström T; Ljungh A Anaerobe; 2012 Oct; 18(5):489-97. PubMed ID: 22940065 [TBL] [Abstract][Full Text] [Related]
16. Fermentation characteristics of exopolysaccharide-producing lactic acid bacteria from sourdough and assessment of the isolates for industrial potential. Jung SW; Kim WJ; Lee KG; Kim CW; Noh WS J Microbiol Biotechnol; 2008 Jul; 18(7):1266-73. PubMed ID: 18667855 [TBL] [Abstract][Full Text] [Related]
17. Maple sap as a rich medium to grow probiotic lactobacilli and to produce lactic acid. Cochu A; Fourmier D; Halasz A; Hawari J Lett Appl Microbiol; 2008 Dec; 47(6):500-7. PubMed ID: 19120917 [TBL] [Abstract][Full Text] [Related]
18. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses. Muñoz M; Mosquera A; Alméciga-Díaz CJ; Melendez AP; Sánchez OF Anaerobe; 2012 Jun; 18(3):321-30. PubMed ID: 22342961 [TBL] [Abstract][Full Text] [Related]
19. Prebiotic preferences of human lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. Ambalam P; Kondepudi KK; Balusupati P; Nilsson I; Wadström T; Ljungh Å J Appl Microbiol; 2015 Dec; 119(6):1672-82. PubMed ID: 26381324 [TBL] [Abstract][Full Text] [Related]
20. Impact of galacto-oligosaccharides on the gut microbiota composition and metabolic activity upon antibiotic treatment during in vitro fermentation. Ladirat SE; Schuren FH; Schoterman MH; Nauta A; Gruppen H; Schols HA FEMS Microbiol Ecol; 2014 Jan; 87(1):41-51. PubMed ID: 23909489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]