These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 22686287)

  • 1. Dielectric core-shell optical antennas for strong solar absorption enhancement.
    Yu Y; Ferry VE; Alivisatos AP; Cao L
    Nano Lett; 2012 Jul; 12(7):3674-81. PubMed ID: 22686287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubling absorption in nanowire solar cells with dielectric shell optical antennas.
    Kim SK; Zhang X; Hill DJ; Song KD; Park JS; Park HG; Cahoon JF
    Nano Lett; 2015 Jan; 15(1):753-8. PubMed ID: 25546325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar harvesting based on perfect absorbing all-dielectric nanoresonators on a mirror.
    Vismara R; Länk NO; Verre R; Käll M; Isabella O; Zeman M
    Opt Express; 2019 Aug; 27(16):A967-A980. PubMed ID: 31510484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric light-trapping nanostructure for enhanced light absorption in organic solar cells.
    Ju S; Kim H; Kwak H; Kang C; Jung I; Oh S; Lee SG; Kim J; Park HJ; Lee KT
    Sci Rep; 2023 Nov; 13(1):20649. PubMed ID: 38001140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.
    Nie KY; Li J; Chen X; Xu Y; Tu X; Ren FF; Du Q; Fu L; Kang L; Tang K; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    Sci Rep; 2017 Aug; 7(1):7503. PubMed ID: 28790363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation engineering of optical antennas for maximum field enhancement.
    Seok TJ; Jamshidi A; Kim M; Dhuey S; Lakhani A; Choo H; Schuck PJ; Cabrini S; Schwartzberg AM; Bokor J; Yablonovitch E; Wu MC
    Nano Lett; 2011 Jul; 11(7):2606-10. PubMed ID: 21648393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
    Yue Z; Cai B; Wang L; Wang X; Gu M
    Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor solar superabsorbers.
    Yu Y; Huang L; Cao L
    Sci Rep; 2014 Feb; 4():4107. PubMed ID: 24531211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells.
    Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z
    Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.
    Yang Z; Gao P; Zhang C; Li X; Ye J
    Sci Rep; 2016 Jul; 6():30503. PubMed ID: 27455911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure.
    Zhao Y; Chen F; Shen Q; Zhang L
    Opt Express; 2012 May; 20(10):11121-36. PubMed ID: 22565735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
    van Lare C; Lenzmann F; Verschuuren MA; Polman A
    Nano Lett; 2015 Aug; 15(8):4846-52. PubMed ID: 26107806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays.
    Zhu J; Yu Z; Burkhard GF; Hsu CM; Connor ST; Xu Y; Wang Q; McGehee M; Fan S; Cui Y
    Nano Lett; 2009 Jan; 9(1):279-82. PubMed ID: 19072061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of modified double-sided grating structures on efficiency enhancement of thin-film silicon solar cells.
    Panda A; Maiti S; Palodhi K; Chakraborty R
    Appl Opt; 2020 Oct; 59(30):9532-9539. PubMed ID: 33104673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.