BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1030 related articles for article (PubMed ID: 22686345)

  • 1. Integration of dissolution into physiologically-based pharmacokinetic models III: PK-Sim®.
    Willmann S; Thelen K; Lippert J
    J Pharm Pharmacol; 2012 Jul; 64(7):997-1007. PubMed ID: 22686345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PBPK models for the prediction of in vivo performance of oral dosage forms.
    Kostewicz ES; Aarons L; Bergstrand M; Bolger MB; Galetin A; Hatley O; Jamei M; Lloyd R; Pepin X; Rostami-Hodjegan A; Sjögren E; Tannergren C; Turner DB; Wagner C; Weitschies W; Dressman J
    Eur J Pharm Sci; 2014 Jun; 57():300-21. PubMed ID: 24060672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms.
    Otsuka K; Shono Y; Dressman J
    J Pharm Pharmacol; 2013 Jul; 65(7):937-52. PubMed ID: 23738721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans.
    Shono Y; Jantratid E; Kesisoglou F; Reppas C; Dressman JB
    Eur J Pharm Biopharm; 2010 Sep; 76(1):95-104. PubMed ID: 20576487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs.
    Willmann S; Thelen K; Becker C; Dressman JB; Lippert J
    Eur J Pharm Biopharm; 2010 Sep; 76(1):83-94. PubMed ID: 20554023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the in vivo performance of enteric coated tablets using an in vitro-in silico-in vivo approach: case example diclofenac.
    Kambayashi A; Blume H; Dressman J
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1337-47. PubMed ID: 24056057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation.
    Kim TH; Shin S; Bulitta JB; Youn YS; Yoo SD; Shin BS
    Mol Pharm; 2017 Jan; 14(1):53-65. PubMed ID: 27809538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates - an evaluation and case study using GastroPlus.
    Heikkinen AT; Baneyx G; Caruso A; Parrott N
    Eur J Pharm Sci; 2012 Sep; 47(2):375-86. PubMed ID: 22759901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir.
    Shono Y; Jantratid E; Dressman JB
    Eur J Pharm Biopharm; 2011 Oct; 79(2):349-56. PubMed ID: 21527341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the oral absorption of a poorly soluble, poorly permeable weak base using biorelevant dissolution and transfer model tests coupled with a physiologically based pharmacokinetic model.
    Wagner C; Jantratid E; Kesisoglou F; Vertzoni M; Reppas C; B Dressman J
    Eur J Pharm Biopharm; 2012 Sep; 82(1):127-38. PubMed ID: 22652546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling.
    Shono Y; Jantratid E; Janssen N; Kesisoglou F; Mao Y; Vertzoni M; Reppas C; Dressman JB
    Eur J Pharm Biopharm; 2009 Sep; 73(1):107-14. PubMed ID: 19465123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for preclinical formulation development using GastroPlus as pharmacokinetic simulation tool and a statistical screening design applied to a dog study.
    Kuentz M; Nick S; Parrott N; Röthlisberger D
    Eur J Pharm Sci; 2006 Jan; 27(1):91-9. PubMed ID: 16219449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro-in silico-in vivo approach to predicting the oral pharmacokinetic profile of salts of weak acids: case example dantrolene.
    Kambayashi A; Dressman JB
    Eur J Pharm Biopharm; 2013 May; 84(1):200-7. PubMed ID: 23262163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery.
    Lüpfert C; Reichel A
    Chem Biodivers; 2005 Nov; 2(11):1462-86. PubMed ID: 17191947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of in-vivo pharmacokinetic profile for immediate and modified release oral dosage forms of furosemide using an in-vitro-in-silico-in-vivo approach.
    Otsuka K; Wagner C; Selen A; Dressman J
    J Pharm Pharmacol; 2015 May; 67(5):651-65. PubMed ID: 25644429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies.
    Chen Y; Jin JY; Mukadam S; Malhi V; Kenny JR
    Biopharm Drug Dispos; 2012 Mar; 33(2):85-98. PubMed ID: 22228214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo.
    Lennernäs H; Aarons L; Augustijns P; Beato S; Bolger M; Box K; Brewster M; Butler J; Dressman J; Holm R; Julia Frank K; Kendall R; Langguth P; Sydor J; Lindahl A; McAllister M; Muenster U; Müllertz A; Ojala K; Pepin X; Reppas C; Rostami-Hodjegan A; Verwei M; Weitschies W; Wilson C; Karlsson C; Abrahamsson B
    Eur J Pharm Sci; 2014 Jun; 57():292-9. PubMed ID: 24189462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of PBPK modelling in drug discovery and development at Pfizer.
    Jones HM; Dickins M; Youdim K; Gosset JR; Attkins NJ; Hay TL; Gurrell IK; Logan YR; Bungay PJ; Jones BC; Gardner IB
    Xenobiotica; 2012 Jan; 42(1):94-106. PubMed ID: 22035569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies.
    Ahmad A; Pepin X; Aarons L; Wang Y; Darwich AS; Wood JM; Tannergren C; Karlsson E; Patterson C; Thörn H; Ruston L; Mattinson A; Carlert S; Berg S; Murphy D; Engman H; Laru J; Barker R; Flanagan T; Abrahamsson B; Budhdeo S; Franek F; Moir A; Hanisch G; Pathak SM; Turner D; Jamei M; Brown J; Good D; Vaidhyanathan S; Jackson C; Nicolas O; Beilles S; Nguefack JF; Louit G; Henrion L; Ollier C; Boulu L; Xu C; Heimbach T; Ren X; Lin W; Nguyen-Trung AT; Zhang J; He H; Wu F; Bolger MB; Mullin JM; van Osdol B; Szeto K; Korjamo T; Pappinen S; Tuunainen J; Zhu W; Xia B; Daublain P; Wong S; Varma MVS; Modi S; Schäfer KJ; Schmid K; Lloyd R; Patel A; Tistaert C; Bevernage J; Nguyen MA; Lindley D; Carr R; Rostami-Hodjegan A
    Eur J Pharm Biopharm; 2020 Nov; 156():50-63. PubMed ID: 32805361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.