These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2000 related articles for article (PubMed ID: 22686372)

  • 21. Solving the electron-nuclear Schrodinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154107. PubMed ID: 18433190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solving the Schrödinger equation of hydrogen molecules with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of the Σ symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2019 Mar; 21(12):6327-6340. PubMed ID: 30480681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic energy partition method applied to ground state helium-like atoms.
    Chen YH; Chao SD
    J Chem Phys; 2017 Mar; 146(12):124120. PubMed ID: 28388121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.
    Bischoff FA; Harrison RJ; Valeev EF
    J Chem Phys; 2012 Sep; 137(10):104103. PubMed ID: 22979846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relativistic explicit correlation: coalescence conditions and practical suggestions.
    Li Z; Shao S; Liu W
    J Chem Phys; 2012 Apr; 136(14):144117. PubMed ID: 22502511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2010 Apr; 132(14):144101. PubMed ID: 20405979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules.
    Toulouse J; Umrigar CJ
    J Chem Phys; 2008 May; 128(17):174101. PubMed ID: 18465904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?
    Nakashima H; Nakatsuji H
    Phys Rev Lett; 2008 Dec; 101(24):240406. PubMed ID: 19113607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-range energy transfer and ionization in extended quantum systems driven by ultrashort spatially shaped laser pulses.
    Paramonov GK; Bandrauk AD; Kühn O
    Phys Chem Chem Phys; 2011 May; 13(19):8637-46. PubMed ID: 21487637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate, two-state ab initio study of the ground and first-excited states of He2+, including exact treatment of all Born-Oppenheimer correction terms.
    Xie J; Poirier B; Gellene GI
    J Chem Phys; 2005 May; 122(18):184310. PubMed ID: 15918707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excited state calculations using phaseless auxiliary-field quantum Monte Carlo: Potential energy curves of low-lying C(2) singlet states.
    Purwanto W; Zhang S; Krakauer H
    J Chem Phys; 2009 Mar; 130(9):094107. PubMed ID: 19275396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian.
    Abe M; Nakajima T; Hirao K
    J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exact, Born-Oppenheimer, and quantum-chemistry-like calculations in helium clusters doped with light molecules: The He2N2(X) system.
    Roncero O; de Lara-Castells MP; Delgado-Barrio G; Villarreal P; Stoecklin T; Voronin A; Rayez JC
    J Chem Phys; 2008 Apr; 128(16):164313. PubMed ID: 18447445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaling behavior of electronic excitations in assemblies of molecules with degenerate ground states.
    Fan HJ; Perkins C; Ortoleva PJ
    J Phys Chem A; 2010 Feb; 114(5):2213-20. PubMed ID: 20085246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relativistic DMRG calculations on the curve crossing of cesium hydride.
    Moritz G; Wolf A; Reiher M
    J Chem Phys; 2005 Nov; 123(18):184105. PubMed ID: 16292897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.
    Przybytek M; Helgaker T
    J Chem Phys; 2013 Aug; 139(5):054114. PubMed ID: 23927250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 100.