BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22686469)

  • 1. Colorimetric method for determining Pb2+ ions in water enhanced with non-precious-metal nanoparticles.
    Yan J; Indra EM
    Anal Chem; 2012 Jul; 84(14):6122-7. PubMed ID: 22686469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles.
    Hung YL; Hsiung TM; Chen YY; Huang CC
    Talanta; 2010 Jul; 82(2):516-22. PubMed ID: 20602929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric assay for lead ions based on the leaching of gold nanoparticles.
    Chen YY; Chang HT; Shiang YC; Hung YL; Chiang CK; Huang CC
    Anal Chem; 2009 Nov; 81(22):9433-9. PubMed ID: 19852441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions.
    Nalawade P; Kapoor S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():132-5. PubMed ID: 23933548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles.
    Guo Y; Wang Z; Qu W; Shao H; Jiang X
    Biosens Bioelectron; 2011 Jun; 26(10):4064-9. PubMed ID: 21543219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead (II) ion detection in surface water with pM sensitivity using aza-crown-ether-modified silver nanoparticles via dynamic light scattering.
    Zhang L; Yao Y; Shan J; Li H
    Nanotechnology; 2011 Jul; 22(27):275504. PubMed ID: 21597156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Click synthesis of podand triazole-linked gold nanoparticles as highly selective and sensitive colorimetric probes for lead(II) ions.
    Li H; Zheng Q; Han C
    Analyst; 2010 Jun; 135(6):1360-4. PubMed ID: 20358034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A colorimetric probe to determine Pb(2+) using functionalized silver nanoparticles.
    Noh KC; Nam YS; Lee HJ; Lee KB
    Analyst; 2015 Dec; 140(24):8209-16. PubMed ID: 26555436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.
    Ratnarathorn N; Chailapakul O; Dungchai W
    Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.
    Lou T; Chen L; Chen Z; Wang Y; Chen L; Li J
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4215-20. PubMed ID: 21970438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles.
    Chai F; Wang C; Wang T; Li L; Su Z
    ACS Appl Mater Interfaces; 2010 May; 2(5):1466-70. PubMed ID: 20429606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.
    Hormozi-Nezhad MR; Abbasi-Moayed S
    Talanta; 2014 Nov; 129():227-32. PubMed ID: 25127588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution.
    Wu Y; Zhan S; Wang F; He L; Zhi W; Zhou P
    Chem Commun (Camb); 2012 May; 48(37):4459-61. PubMed ID: 22453203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective in situ metal ion determination by hybrid electrochemical "adsorption-desorption" and colorimetric methods.
    Li M; Li DW; Li YT; Xu DK; Long YT
    Anal Chim Acta; 2011 Sep; 701(2):157-63. PubMed ID: 21801882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green colorimetric recognition of trace sulfide ions in water samples using curcumin nanoparticle in micelle mediated system.
    Pourreza N; Golmohammadi H
    Talanta; 2014 Feb; 119():181-6. PubMed ID: 24401402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine.
    Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z
    Analyst; 2011 Sep; 136(18):3725-30. PubMed ID: 21804959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection.
    Li T; Wang E; Dong S
    Anal Chem; 2010 Feb; 82(4):1515-20. PubMed ID: 20095579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective and sensitive recognition of cobalt(II) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis.
    Gore AH; Gunjal DB; Kokate MR; Sudarsan V; Anbhule PV; Patil SR; Kolekar GB
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5217-26. PubMed ID: 22948013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water.
    Nguyen H; Sung Y; O'Shaughnessy K; Shan X; Shih WC
    Anal Chem; 2018 Oct; 90(19):11517-11522. PubMed ID: 30173507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.