These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22687241)

  • 61. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway.
    Tatebayashi K; Takekawa M; Saito H
    EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae.
    Sugiyama M; Nugroho S; Iida N; Sakai T; Kaneko Y; Harashima S
    J Biochem; 2011 Jul; 150(1):103-11. PubMed ID: 21474464
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of Cdc42-Cla4 interaction in the pheromone response of Saccharomyces cerevisiae.
    Heinrich M; Köhler T; Mösch HU
    Eukaryot Cell; 2007 Feb; 6(2):317-27. PubMed ID: 17189484
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pradimicin resistance of yeast is caused by a mutation of the putative N-glycosylation sites of osmosensor protein Sln1.
    Hiramoto F; Nomura N; Furumai T; Igarashi Y; Oki T
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):238-41. PubMed ID: 15665496
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in
    Zhou F; Hu HY; Li DX; Tan LG; Zhang Q; Gao HT; Sun HL; Tian XL; Shi MW; Zhang FL; Li CW
    Plant Dis; 2021 Jul; 105(7):1936-1941. PubMed ID: 33044139
    [No Abstract]   [Full Text] [Related]  

  • 66. Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway.
    Furukawa K; Yoshimi A; Furukawa T; Hoshi Y; Hagiwara D; Sato N; Fujioka T; Mizutani O; Mizuno T; Kobayashi T; Abe K
    Biosci Biotechnol Biochem; 2007 Jul; 71(7):1724-30. PubMed ID: 17617716
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides.
    Li Y; He P; Tian C; Wang Y
    Fungal Genet Biol; 2020 Feb; 135():103289. PubMed ID: 31704368
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi.
    Meena N; Kaur H; Mondal AK
    J Biol Chem; 2010 Apr; 285(16):12121-32. PubMed ID: 20164185
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways.
    Fassler JS; West AH
    Eukaryot Cell; 2013 Aug; 12(8):1052-60. PubMed ID: 23771905
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum.
    Taiwo AO; Harper LA; Derbyshire MC
    BMC Genomics; 2021 Jan; 22(1):91. PubMed ID: 33516198
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phylogenetic and preliminary phenotypic analysis of yeast PAQR receptors: potential antifungal targets.
    Villa NY; Moussatche P; Chamberlin SG; Kumar A; Lyons TJ
    J Mol Evol; 2011 Oct; 73(3-4):134-52. PubMed ID: 22009226
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pradimicin-resistance of yeast is caused by a point mutation of the histidine-containing phosphotransfer protein Ypd1.
    Hiramoto F; Nomura N; Furumai T; Igarashi Y; Oki T
    J Antibiot (Tokyo); 2003 Dec; 56(12):1053-7. PubMed ID: 15015733
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genomics of Compensatory Adaptation in Experimental Populations of
    Dettman JR; Rodrigue N; Schoustra SE; Kassen R
    G3 (Bethesda); 2017 Feb; 7(2):427-436. PubMed ID: 27903631
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional dissection of individual domains in group III histidine kinase Sshk1p from the phytopathogenic fungus Sclerotinia sclerotiorum.
    Li T; Xiu Q; Wang Q; Wang J; Duan Y; Zhou M
    Pestic Biochem Physiol; 2021 Oct; 178():104914. PubMed ID: 34446190
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Antifungal properties and target evaluation of three putative bacterial histidine kinase inhibitors.
    Deschenes RJ; Lin H; Ault AD; Fassler JS
    Antimicrob Agents Chemother; 1999 Jul; 43(7):1700-3. PubMed ID: 10390225
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigating the role of plant SNF1-related protein kinases.
    Halford NG; Man AL; Barker JH; Monger W; Shewry PR; Smith A; Purcell PC
    Biochem Soc Trans; 1994 Nov; 22(4):953-7. PubMed ID: 7698492
    [No Abstract]   [Full Text] [Related]  

  • 77.
    Sharma A; Martoliya Y; Mondal AK
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887509
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tank-mixing adjuvants enhanced the efficacy of fludioxonil on cucumber anthracnose by ameliorating the penetration ability of active ingredients on target interface.
    Li XX; He LF; Pang XY; Gao YY; Liu Y; Zhang P; Wei G; Mu W; Li BX; Liu F
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111804. PubMed ID: 33940521
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase activity in the adenine-histidine auxotroph AD-3 of S. cerevisiae.
    Jones EW; Magasanik B
    Biochem Biophys Res Commun; 1967 Nov; 29(4):600-4. PubMed ID: 16496542
    [No Abstract]   [Full Text] [Related]  

  • 80. Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase?
    Elich TD; Chory J
    Cell; 1997 Dec; 91(6):713-6. PubMed ID: 9413979
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.