These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 22687287)
1. Comparison of in vitro and in vivo protein release from hydrogel systems. Wöhl-Bruhn S; Badar M; Bertz A; Tiersch B; Koetz J; Menzel H; Mueller PP; Bunjes H J Control Release; 2012 Aug; 162(1):127-33. PubMed ID: 22687287 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731 [TBL] [Abstract][Full Text] [Related]
3. Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres. Wöhl-Bruhn S; Heim E; Schwoerer A; Bertz A; Harling S; Menzel H; Schilling M; Ludwig F; Bunjes H Int J Pharm; 2012 Oct; 436(1-2):677-84. PubMed ID: 22820133 [TBL] [Abstract][Full Text] [Related]
4. Variations in polyethylene glycol brands and their influence on the preparation process of hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Kuntsche J; Menzel H; Bunjes H Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1215-8. PubMed ID: 23567486 [TBL] [Abstract][Full Text] [Related]
5. Mobility of green fluorescent protein in hydrogel-based drug-delivery systems studied by anisotropy and fluorescence recovery after photobleaching. Bertz A; Ehlers JE; Wöhl-Bruhn S; Bunjes H; Gericke KH; Menzel H Macromol Biosci; 2013 Feb; 13(2):215-26. PubMed ID: 23255283 [TBL] [Abstract][Full Text] [Related]
6. Design of a novel hydrogel-based intelligent system for controlled drug release. He H; Cao X; Lee LJ J Control Release; 2004 Mar; 95(3):391-402. PubMed ID: 15023451 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: influence of network structure and drug size on release rate. Bertz A; Wöhl-Bruhn S; Miethe S; Tiersch B; Koetz J; Hust M; Bunjes H; Menzel H J Biotechnol; 2013 Jan; 163(2):243-9. PubMed ID: 22789475 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411 [TBL] [Abstract][Full Text] [Related]
9. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Cai S; Liu Y; Zheng Shu X; Prestwich GD Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243 [TBL] [Abstract][Full Text] [Related]
10. Controlled shielding and deshielding of gene delivery polyplexes using hydroxyethyl starch (HES) and alpha-amylase. Noga M; Edinger D; Rödl W; Wagner E; Winter G; Besheer A J Control Release; 2012 Apr; 159(1):92-103. PubMed ID: 22269664 [TBL] [Abstract][Full Text] [Related]
11. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels. Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570 [TBL] [Abstract][Full Text] [Related]
12. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712 [TBL] [Abstract][Full Text] [Related]
13. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Kumar A; Lahiri SS; Singh H Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246 [TBL] [Abstract][Full Text] [Related]
14. Development of smart delivery system for ascorbic acid using pH-responsive P(MAA-co-EGMA) hydrogel microparticles. Lee E; Kim K; Choi M; Lee Y; Park JW; Kim B Drug Deliv; 2010 Nov; 17(8):573-80. PubMed ID: 20626233 [TBL] [Abstract][Full Text] [Related]
15. PEG-benzofulvene copolymer hydrogels for antibody delivery. Licciardi M; Grassi M; Di Stefano M; Feruglio L; Giuliani G; Valenti S; Cappelli A; Giammona G Int J Pharm; 2010 May; 390(2):183-90. PubMed ID: 20153413 [TBL] [Abstract][Full Text] [Related]
16. A new hydrogel drug delivery system based on hydroxyethylstarch derivatives. Harling S; Schwoerer A; Scheibe K; Daniels R; Menzel H J Microencapsul; 2010; 27(5):400-8. PubMed ID: 19883245 [TBL] [Abstract][Full Text] [Related]
17. Polymeric matrix for drug delivery: honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel. Gou M; Gong C; Zhang J; Wang X; Wang X; Gu Y; Guo G; Chen L; Luo F; Zhao X; Wei Y; Qian Z J Biomed Mater Res A; 2010 Apr; 93(1):219-26. PubMed ID: 19557789 [TBL] [Abstract][Full Text] [Related]
18. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924 [TBL] [Abstract][Full Text] [Related]
19. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
20. A novel controlled local drug delivery system for inner ear disease. Paulson DP; Abuzeid W; Jiang H; Oe T; O'Malley BW; Li D Laryngoscope; 2008 Apr; 118(4):706-11. PubMed ID: 18182968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]