BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22688045)

  • 1. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques.
    Regmi U; Palma M; Barroso CG
    Anal Chim Acta; 2012 Jun; 732():137-44. PubMed ID: 22688045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine.
    Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM
    Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
    Fernandez K; Agosin E
    J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal component analysis applied to Fourier transform infrared spectroscopy for the design of calibration sets for glycerol prediction models in wine and for the detection and classification of outlier samples.
    Nieuwoudt HH; Prior BA; Pretorius IS; Manley M; Bauer FF
    J Agric Food Chem; 2004 Jun; 52(12):3726-35. PubMed ID: 15186089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow injection on-line dialysis coupled to high performance liquid chromatography for the determination of some organic acids in wine.
    Kritsunankul O; Pramote B; Jakmunee J
    Talanta; 2009 Sep; 79(4):1042-9. PubMed ID: 19615506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.
    Shen F; Niu X; Yang D; Ying Y; Li B; Zhu G; Wu J
    J Agric Food Chem; 2010 Sep; 58(17):9809-16. PubMed ID: 20707307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of organic acids in wines by Fourier-transform infrared spectroscopy.
    Moreira JL; Santos L
    Anal Bioanal Chem; 2005 May; 382(2):421-5. PubMed ID: 15782339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis.
    Friedel M; Patz CD; Dietrich H
    Food Chem; 2013 Dec; 141(4):4200-7. PubMed ID: 23993606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of sugars in Chinese rice wine by Fourier transform near-infrared spectroscopy with partial least-squares regression.
    Niu X; Shen F; Yu Y; Yan Z; Xu K; Yu H; Ying Y
    J Agric Food Chem; 2008 Aug; 56(16):7271-8. PubMed ID: 18680372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new FT-IR method combined with multivariate analysis for the classification of vinegars from different raw materials and production processes.
    Guerrero ED; Mejías RC; Marín RN; Lovillo MP; Barroso CG
    J Sci Food Agric; 2010 Mar; 90(4):712-8. PubMed ID: 20355103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of total and volatile acidity in red wines by Fourier-transform mid-infrared spectroscopy and iterative predictor weighting.
    Pizarro C; González-Sáiz JM; Esteban-Díez I; Orio P
    Anal Bioanal Chem; 2011 Feb; 399(6):2061-72. PubMed ID: 21042907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring large scale wine fermentations with infrared spectroscopy.
    Urtubia A; Ricardo Pérez-Correa J; Meurens M; Agosin E
    Talanta; 2004 Oct; 64(3):778-84. PubMed ID: 18969672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines.
    Malacarne M; Bergamo L; Bertoldi D; Nicolini G; Larcher R
    Talanta; 2013 Dec; 117():505-10. PubMed ID: 24209373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks.
    Dixit V; Tewari JC; Cho BK; Irudayaraj JM
    Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression.
    Cozzolino D; Kwiatkowski MJ; Dambergs RG; Cynkar WU; Janik LJ; Skouroumounis G; Gishen M
    Talanta; 2008 Jan; 74(4):711-6. PubMed ID: 18371698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality.
    Barnaba FE; Bellincontro A; Mencarelli F
    J Sci Food Agric; 2014 Apr; 94(6):1071-7. PubMed ID: 24037743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy.
    Caligiani A; Acquotti D; Palla G; Bocchi V
    Anal Chim Acta; 2007 Feb; 585(1):110-9. PubMed ID: 17386654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting the quality of glycerol monolaurate: a method for using Fourier transform infrared spectroscopy with wavelet transform and modified uninformative variable elimination.
    Chen X; Wu D; He Y; Liu S
    Anal Chim Acta; 2009 Apr; 638(1):16-22. PubMed ID: 19298874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.