BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22688045)

  • 21. Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters.
    Urbano Cuadrado M; Luque de Castro MD; Pérez Juan PM; Gómez-Nieto MA
    Talanta; 2005 Mar; 66(1):218-24. PubMed ID: 18969984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of organic acids by high-performance liquid chromatography with electrochemical detection during wine brewing.
    Kotani A; Miyaguchi Y; Tomita E; Takamura K; Kusu F
    J Agric Food Chem; 2004 Mar; 52(6):1440-4. PubMed ID: 15030193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Total sulfur determination in residues of crude oil distillation using FT-IR/ATR and variable selection methods.
    Müller AL; Picoloto RS; de Azevedo Mello P; Ferrão MF; de Fátima Pereira dos Santos M; Guimarães RC; Müller EI; Flores EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():82-7. PubMed ID: 22257712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Influence of optical path length on NIR analysis results for trace metal determination in Chinese rice wine].
    Yu HY; Ying YB; Xie LJ; Fu XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1118-20. PubMed ID: 17763771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression.
    Fragoso S; Aceña L; Guasch J; Mestres M; Busto O
    J Agric Food Chem; 2011 Oct; 59(20):10795-802. PubMed ID: 21905733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination.
    Geană EI; Ciucure CT; Apetrei C; Artem V
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31744212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.
    Jensen JS; Egebo M; Meyer AS
    J Agric Food Chem; 2008 May; 56(10):3493-9. PubMed ID: 18442247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line fermentation monitoring by mid-infrared spectroscopy.
    Mazarevica G; Diewok J; Baena JR; Rosenberg E; Lendl B
    Appl Spectrosc; 2004 Jul; 58(7):804-10. PubMed ID: 15282045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Attenuated Total Reflectance Mid-Infrared Spectroscopy for Rapid Prediction of Amino Acids in Chinese Rice Wine.
    Wu Z; Xu E; Long J; Wang F; Xu X; Jin Z; Jiao A
    J Food Sci; 2015 Aug; 80(8):C1670-9. PubMed ID: 26148137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HPLC analysis of organic acids using a novel stationary phase.
    de Quirós AR; Lage-Yusty MA; López-Hernández J
    Talanta; 2009 Apr; 78(2):643-6. PubMed ID: 19203638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The pear acidity quantified analysis using PLS methods and Fourier transform near-infrared spectroscopy].
    Liu YD; Ying YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1454-6. PubMed ID: 17058944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the quality of deep frying oils with Fourier transform near-infrared and mid-infrared spectroscopy.
    Du R; Lai K; Xiao Z; Shen Y; Wang X; Huang Y
    J Food Sci; 2012 Feb; 77(2):C261-6. PubMed ID: 22251019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of Fourier transform infrared spectroscopy for monitoring short-chain free fatty acids in Swiss cheese.
    Koca N; Rodriguez-Saona LE; Harper WJ; Alvarez VB
    J Dairy Sci; 2007 Aug; 90(8):3596-603. PubMed ID: 17638969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines.
    Sen I; Ozturk B; Tokatli F; Ozen B
    Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fourier transform infrared (FT-IR) spectroscopy and improved principal component regression (PCR) for quantification of solid analytes in microalgae and bacteria.
    Horton RB; Duranty E; McConico M; Vogt F
    Appl Spectrosc; 2011 Apr; 65(4):442-53. PubMed ID: 21396193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).
    Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL
    Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine.
    Rudnitskaya A; Rocha SM; Legin A; Pereira V; Marques JC
    Anal Chim Acta; 2010 Mar; 662(1):82-9. PubMed ID: 20152269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous measurement of total acid content and soluble salt-free solids content in Chinese vinegar using near-infrared spectroscopy.
    Chen Q; Ding J; Cai J; Sun Z; Zhao J
    J Food Sci; 2012 Feb; 77(2):C222-7. PubMed ID: 22250960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy.
    Liu F; He Y; Wang L
    Anal Chim Acta; 2008 Mar; 610(2):196-204. PubMed ID: 18291129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antibacterial activity of red and white wine against oral streptococci.
    Daglia M; Papetti A; Grisoli P; Aceti C; Dacarro C; Gazzani G
    J Agric Food Chem; 2007 Jun; 55(13):5038-42. PubMed ID: 17547418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.