These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22688132)

  • 1. Synthesis and structure confirmation of fuscachelins A and B, structurally unique natural product siderophores from Thermobifida fusca.
    Dimise EJ; Condurso HL; Stoker GE; Bruner SD
    Org Biomol Chem; 2012 Jul; 10(28):5353-6. PubMed ID: 22688132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca.
    Dimise EJ; Widboom PF; Bruner SD
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15311-6. PubMed ID: 18832174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release.
    Albrecht-Gary AM; Crumbliss AL
    Met Ions Biol Syst; 1998; 35():239-327. PubMed ID: 9444763
    [No Abstract]   [Full Text] [Related]  

  • 4. An artificial siderophore for the detection of iron(III).
    Wallace KJ; Gray M; Zhong Z; Lynch VM; Anslyn EV
    Dalton Trans; 2005 Jul; (14):2436-41. PubMed ID: 15995754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca.
    Li K; Chen WH; Bruner SD
    Biochemistry; 2015 Jun; 54(25):3989-4000. PubMed ID: 26043104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Common synthetic scaffolds" in the synthesis of structurally diverse natural products.
    Anagnostaki EE; Zografos AL
    Chem Soc Rev; 2012 Sep; 41(17):5613-25. PubMed ID: 22782134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.
    Deicke M; Mohr JF; Bellenger JP; Wichard T
    Analyst; 2014 Dec; 139(23):6096-9. PubMed ID: 25298978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicles to concentrate iron in low-iron media: an attempt to mimic marine siderophores.
    Bednarova L; Brandel J; d'Hardemare Adu M; Bednar J; Serratrice G; Pierre JL
    Chemistry; 2008; 14(12):3680-6. PubMed ID: 18293349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical interference of biological systems with natural products.
    Gademann K; Sieber S
    Chimia (Aarau); 2011; 65(11):835-8. PubMed ID: 22289366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient solid-phase strategy for total synthesis of naturally occurring amphiphilic marine siderophores: amphibactin-T and moanachelin ala-B.
    Cherkupally P; Ramesh S; Govender T; Kruger HG; de la Torre BG; Albericio F
    Org Biomol Chem; 2015 Apr; 13(16):4760-8. PubMed ID: 25806414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties.
    Rufián-Henares JA; de la Cueva SP
    J Agric Food Chem; 2009 Jan; 57(2):432-8. PubMed ID: 19123814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel catecholate-type siderophore analogs based on a myo-inositol scaffold.
    Schnabelrauch M; Egbe DA; Heinisch L; Reissbrodt R; Möllmann U
    Biometals; 1998 Sep; 11(3):243-51. PubMed ID: 9850568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine siderophores and microbial iron mobilization.
    Butler A
    Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key achievements in the total synthesis of vibsane-type diterpenoids.
    Mak JY; Williams CM
    Nat Prod Rep; 2012 Apr; 29(4):440-8. PubMed ID: 22334049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of "unnatural" products: synthetic biology meets synthetic chemistry.
    Goss RJ; Shankar S; Fayad AA
    Nat Prod Rep; 2012 Aug; 29(8):870-89. PubMed ID: 22744619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of iron chelators: syntheses and iron (III) complexing abilities of tripodal tris-bidentate ligands.
    d'Hardemare Adu M; Torelli S; Serratrice G; Pierre JL
    Biometals; 2006 Aug; 19(4):349-66. PubMed ID: 16841245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view.
    Chu BC; Garcia-Herrero A; Johanson TH; Krewulak KD; Lau CK; Peacock RS; Slavinskaya Z; Vogel HJ
    Biometals; 2010 Aug; 23(4):601-11. PubMed ID: 20596754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4.
    Seyedsayamdost MR; Traxler MF; Zheng SL; Kolter R; Clardy J
    J Am Chem Soc; 2011 Aug; 133(30):11434-7. PubMed ID: 21699219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological activity of saccharide based lipophilic siderophore mimetics as potential growth promoters for mycobacteria.
    Gebhardt P; Crumbliss AL; Miller MJ; Möllmann U
    Biometals; 2008 Feb; 21(1):41-51. PubMed ID: 17390213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the empirical force field to macrocyclic ion carriers, siderophores, and biomimetic analogs.
    Felder CE; Shanzer A
    Biopolymers; 2003 Mar; 68(3):407-21. PubMed ID: 12601799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.