These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22688633)

  • 1. The neurobiology of syntax: beyond string sets.
    Petersson KM; Hagoort P
    Philos Trans R Soc Lond B Biol Sci; 2012 Jul; 367(1598):1971-83. PubMed ID: 22688633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What artificial grammar learning reveals about the neurobiology of syntax.
    Petersson KM; Folia V; Hagoort P
    Brain Lang; 2012 Feb; 120(2):83-95. PubMed ID: 20943261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing.
    Dominey PF; Inui T; Hoen M
    Brain Lang; 2009; 109(2-3):80-92. PubMed ID: 18835637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntax without language: neurobiological evidence for cross-domain syntactic computations.
    Tettamanti M; Rotondi I; Perani D; Scotti G; Fazio F; Cappa SF; Moro A
    Cortex; 2009; 45(7):825-38. PubMed ID: 19111290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Simple Semantics in the Process of Artificial Grammar Learning.
    Öttl B; Jäger G; Kaup B
    J Psycholinguist Res; 2017 Oct; 46(5):1285-1308. PubMed ID: 28484966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study.
    Krause CD; Fengler A; Pino D; Sehm B; Friederici AD; Obrig H
    Neuropsychologia; 2023 Feb; 180():108465. PubMed ID: 36586718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the pursuit of the brain network for proto-syntactic learning in non-human primates: conceptual issues and neurobiological hypotheses.
    Petkov CI; Wilson B
    Philos Trans R Soc Lond B Biol Sci; 2012 Jul; 367(1598):2077-88. PubMed ID: 22688642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension.
    Hasson U; Egidi G; Marelli M; Willems RM
    Cognition; 2018 Nov; 180():135-157. PubMed ID: 30053570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language comprehension.
    Xiao Y; Friederici AD; Margulies DS; Brauer J
    Neuropsychologia; 2016 Mar; 83():274-282. PubMed ID: 26352468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recursive hierarchical embedding in vision is impaired by posterior middle temporal gyrus lesions.
    Martins MJD; Krause C; Neville DA; Pino D; Villringer A; Obrig H
    Brain; 2019 Oct; 142(10):3217-3229. PubMed ID: 31560064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segregating the core computational faculty of human language from working memory.
    Makuuchi M; Bahlmann J; Anwander A; Friederici AD
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8362-7. PubMed ID: 19416819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formal language theory: refining the Chomsky hierarchy.
    Jäger G; Rogers J
    Philos Trans R Soc Lond B Biol Sci; 2012 Jul; 367(1598):1956-70. PubMed ID: 22688632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The declarative/procedural model of lexicon and grammar.
    Ullman MT
    J Psycholinguist Res; 2001 Jan; 30(1):37-69. PubMed ID: 11291183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Language processing modulated by literacy: a network analysis of verbal repetition in literate and illiterate subjects.
    Petersson KM; Reis A; Askelöf S; Castro-Caldas A; Ingvar M
    J Cogn Neurosci; 2000 May; 12(3):364-82. PubMed ID: 10931764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Localization of language function in the brain].
    Miyashita H; Sakai KL
    Brain Nerve; 2011 Dec; 63(12):1339-45. PubMed ID: 22147453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neurobiology of language beyond single words.
    Hagoort P; Indefrey P
    Annu Rev Neurosci; 2014; 37():347-62. PubMed ID: 24905595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Grammar Learning Capabilities in an Abstract Visual Task Match Requirements for Linguistic Syntax.
    Westphal-Fitch G; Giustolisi B; Cecchetto C; Martin JS; Fitch WT
    Front Psychol; 2018; 9():1210. PubMed ID: 30087630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial grammar learning meets formal language theory: an overview.
    Fitch WT; Friederici AD
    Philos Trans R Soc Lond B Biol Sci; 2012 Jul; 367(1598):1933-55. PubMed ID: 22688631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control.
    Qin L; Lyu B; Shu S; Yin Y; Wang X; Ge J; Siok WT; Gao JH
    J Neurosci; 2021 Apr; 41(17):3854-3869. PubMed ID: 33687963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does formal complexity reflect cognitive complexity? Investigating aspects of the Chomsky Hierarchy in an artificial language learning study.
    Öttl B; Jäger G; Kaup B
    PLoS One; 2015; 10(4):e0123059. PubMed ID: 25885790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.