These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 22688679)

  • 1. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.
    Adamcik J; Lara C; Usov I; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA; Hamley IW; Mezzenga R
    Nanoscale; 2012 Aug; 4(15):4426-9. PubMed ID: 22688679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-mechanical characterization of disassembling amyloid fibrils using the Peak Force QNM method.
    Wang W; Guo Z; Sun J; Li Z
    Biopolymers; 2017 Feb; 107(2):61-69. PubMed ID: 27696370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscopic properties of semiflexible amyloid fibrils.
    Sagis LM; Veerman C; van der Linden E
    Langmuir; 2004 Feb; 20(3):924-7. PubMed ID: 15773124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. beta-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy.
    Hu HY; Li Q; Cheng HC; Du HN
    Biopolymers; 2001; 62(1):15-21. PubMed ID: 11135188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading.
    Paparcone R; Keten S; Buehler MJ
    J Biomech; 2010 Apr; 43(6):1196-201. PubMed ID: 20044089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation.
    Guo S; Akhremitchev BB
    Biomacromolecules; 2006 May; 7(5):1630-6. PubMed ID: 16677048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-seeding of alpha-synuclein aggregation by amyloid fibrils of food proteins.
    Vaneyck J; Segers-Nolten I; Broersen K; Claessens MMAE
    J Biol Chem; 2021; 296():100358. PubMed ID: 33539920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation and fibrillogenesis of proteins not associated with disease: a few case studies.
    Lassé M; Gerrard JA; Pearce FG
    Subcell Biochem; 2012; 65():253-70. PubMed ID: 23225007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils.
    Grelle G; Otto A; Lorenz M; Frank RF; Wanker EE; Bieschke J
    Biochemistry; 2011 Dec; 50(49):10624-36. PubMed ID: 22054421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the aggregation of an amyloidogenic alpha-synuclein peptide fragment.
    Madine J; Doig AJ; Kitmitto A; Middleton DA
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1113-5. PubMed ID: 16246058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-seeding effects of amyloid β-protein and α-synuclein.
    Ono K; Takahashi R; Ikeda T; Yamada M
    J Neurochem; 2012 Sep; 122(5):883-90. PubMed ID: 22734715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy.
    Margittai M; Langen R
    Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of aggregates from 38 kinds of non disease-related proteins: identifying the intrinsic propensity of polypeptides to form amyloid fibrils.
    Aso Y; Shiraki K; Takagi M
    Biosci Biotechnol Biochem; 2007 May; 71(5):1313-21. PubMed ID: 17485839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of different regions of alpha-synuclein in the assembly of fibrils.
    Qin Z; Hu D; Han S; Hong DP; Fink AL
    Biochemistry; 2007 Nov; 46(46):13322-30. PubMed ID: 17963364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations alter the geometry and mechanical properties of Alzheimer's Aβ(1-40) amyloid fibrils.
    Paparcone R; Pires MA; Buehler MJ
    Biochemistry; 2010 Oct; 49(41):8967-77. PubMed ID: 20731379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the beta-sheet-breaker peptide LPFFD on oriented network of amyloid β25-35 fibrils.
    Murvai U; Soós K; Penke B; Kellermayer MS
    J Mol Recognit; 2011; 24(3):453-60. PubMed ID: 21504023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.