These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Advances in microneedles for transdermal diagnostics and sensing applications. Wang L; Wang Y; Wu X; Wang P; Luo X; Lv S Mikrochim Acta; 2024 Jun; 191(7):406. PubMed ID: 38898359 [TBL] [Abstract][Full Text] [Related]
4. Integration of Hollow Microneedle Arrays with Jellyfish-Shaped Electrochemical Sensor for the Detection of Biomarkers in Interstitial Fluid. Luo F; Li Z; Shi Y; Sun W; Wang Y; Sun J; Fan Z; Chang Y; Wang Z; Han Y; Zhu Z; Marty JL Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931517 [TBL] [Abstract][Full Text] [Related]
5. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Dervisevic M; Dervisevic E; Esser L; Easton CD; Cadarso VJ; Voelcker NH Biosens Bioelectron; 2023 Feb; 222():114955. PubMed ID: 36462430 [TBL] [Abstract][Full Text] [Related]
7. Reduced Graphene Oxide Nanohybrid-Assembled Microneedles as Mini-Invasive Electrodes for Real-Time Transdermal Biosensing. Jin Q; Chen HJ; Li X; Huang X; Wu Q; He G; Hang T; Yang C; Jiang Z; Li E; Zhang A; Lin Z; Liu F; Xie X Small; 2019 Feb; 15(6):e1804298. PubMed ID: 30605244 [TBL] [Abstract][Full Text] [Related]
8. Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. Bakhshandeh F; Zheng H; Barra NG; Sadeghzadeh S; Ausri I; Sen P; Keyvani F; Rahman F; Quadrilatero J; Liu J; Schertzer JD; Soleymani L; Poudineh M Adv Mater; 2024 Aug; 36(35):e2313743. PubMed ID: 38752744 [TBL] [Abstract][Full Text] [Related]
9. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Ventrelli L; Marsilio Strambini L; Barillaro G Adv Healthc Mater; 2015 Dec; 4(17):2606-40. PubMed ID: 26439100 [TBL] [Abstract][Full Text] [Related]
10. Intradermal Lactate Monitoring Based on a Microneedle Sensor Patch for Enhanced In Vivo Accuracy. Wang Q; Molinero-Fernandez Á; Wei Q; Xuan X; Konradsson-Geuken Å; Cuartero M; Crespo GA ACS Sens; 2024 Jun; 9(6):3115-3125. PubMed ID: 38778463 [TBL] [Abstract][Full Text] [Related]
12. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Pei S; Babity S; Sara Cordeiro A; Brambilla D Adv Drug Deliv Rev; 2024 Jul; 210():115341. PubMed ID: 38797317 [TBL] [Abstract][Full Text] [Related]
13. Tackling the challenges of developing microneedle-based electrochemical sensors. Abdullah H; Phairatana T; Jeerapan I Mikrochim Acta; 2022 Nov; 189(11):440. PubMed ID: 36329339 [TBL] [Abstract][Full Text] [Related]
14. Protection of Nanostructures-Integrated Microneedle Biosensor Using Dissolvable Polymer Coating. Liu F; Lin Z; Jin Q; Wu Q; Yang C; Chen HJ; Cao Z; Lin DA; Zhou L; Hang T; He G; Xu Y; Xia W; Tao J; Xie X ACS Appl Mater Interfaces; 2019 Feb; 11(5):4809-4819. PubMed ID: 30628778 [TBL] [Abstract][Full Text] [Related]
15. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring. Hu Y; Pan Z; De Bock M; Tan TX; Wang Y; Shi Y; Yan N; Yetisen AK Biosens Bioelectron; 2024 Oct; 262():116542. PubMed ID: 38991372 [TBL] [Abstract][Full Text] [Related]