These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2268872)

  • 1. Roles for replicative deactivation in yeast-ethanol fermentations.
    Jones RP
    Crit Rev Biotechnol; 1990; 10(3):205-22. PubMed ID: 2268872
    [No Abstract]   [Full Text] [Related]  

  • 2. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae.
    Jung YJ; Park HD
    Biotechnol Lett; 2005 Dec; 27(23-24):1855-9. PubMed ID: 16328979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae.
    Park SE; Koo HM; Park YK; Park SM; Park JC; Lee OK; Park YC; Seo JH
    Bioresour Technol; 2011 May; 102(10):6033-8. PubMed ID: 21421300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae.
    Bazua CD; Wilke CR
    Biotechnol Bioeng Symp; 1977; (7):105-18. PubMed ID: 332248
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics and mathematical model of ethanol formation by immobilized yeast cells.
    Li X; Jin N
    Chin J Biotechnol; 1991; 7(3):229-39. PubMed ID: 1823593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains.
    Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS
    FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effects on ethanol fermentation of Saccharomyces cerevisiae by adding Ca2+ and inositol].
    Zhao B; Zhang L
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):174-7. PubMed ID: 12555426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: investigation of discrepancies between predicted and observed performance at high solids concentration.
    Zhang J; Shao X; Lynd LR
    Biotechnol Bioeng; 2009 Dec; 104(5):932-8. PubMed ID: 19575440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.
    Guimarães PM; Teixeira JA; Domingues L
    Biotechnol Lett; 2008 Nov; 30(11):1953-8. PubMed ID: 18575804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on ethanol tolerance of Saccharomyces cerevisiae X330 under very high gravity medium].
    Xue YM; Jiang N
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):508-13. PubMed ID: 16755936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of cellulosic materials through enzyamtic hydrolysis. I. Fermentation of hydrolysate to ethanol and single-cell protein.
    Cysewski GR; Wilke CR
    Biotechnol Bioeng; 1976 Sep; 18(9):1297-1313. PubMed ID: 786408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of fermentation inhibitors on the rate of glutathione accumulation by yeast during fermentation].
    Shcherbakov SS; Popov MP
    Prikl Biokhim Mikrobiol; 1978; 14(3):341-4. PubMed ID: 353786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch.
    Khaw TS; Katakura Y; Koh J; Kondo A; Ueda M; Shioya S
    Appl Microbiol Biotechnol; 2006 May; 70(5):573-9. PubMed ID: 16133340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states.
    Sanchez-Gonzalez Y; Cameleyre X; Molina-Jouve C; Goma G; Alfenore S
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):459-66. PubMed ID: 18923846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring cell concentration and activity by multiple excitation fluorometry.
    Li JK; Asali EC; Humphrey AE; Horvath JJ
    Biotechnol Prog; 1991; 7(1):21-7. PubMed ID: 1366978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obtaining and selection of hexokinases-less strains of Saccharomyces cerevisiae for production of ethanol and fructose from sucrose.
    Carvalho RS; Gomes LH; Gonzaga do P Filho L; Tavares FC
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1131-7. PubMed ID: 18008068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses.
    Converti A; Arni S; Sato S; de Carvalho JC; Aquarone E
    Biotechnol Bioeng; 2003 Oct; 84(1):88-95. PubMed ID: 12910547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [High concentration ethanol continuous fermentation using yeast flocs].
    Liu C; Bai F; Shao M; Xie J; Li N
    Wei Sheng Wu Xue Bao; 2001 Jun; 41(3):367-71. PubMed ID: 12549094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.