These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22688807)

  • 21. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.
    Chen T; Xue Y; Roy AK; Dai L
    ACS Nano; 2014 Jan; 8(1):1039-46. PubMed ID: 24350978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Note: stacked rings for terahertz wave-guiding.
    de Rijk E; Macor A; Hogge JP; Alberti S; Ansermet JP
    Rev Sci Instrum; 2011 Jun; 82(6):066102. PubMed ID: 21721737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tilted pillars on wrinkled elastomers as a reversibly tunable optical window.
    Lee E; Zhang M; Cho Y; Cui Y; Van der Spiegel J; Engheta N; Yang S
    Adv Mater; 2014 Jun; 26(24):4127-33. PubMed ID: 24710742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture.
    Kowerdziej R; Olifierczuk M; Parka J
    Opt Express; 2018 Feb; 26(3):2443-2452. PubMed ID: 29401784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Matsuhisa N; Qi D; Leow WR; Yang H; Yu J; Chen G; Liu Y; Wan C; Liu Z; Chen X
    Adv Mater; 2018 Mar; 30(12):e1706589. PubMed ID: 29380896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new class of electrically tunable metamaterial terahertz modulators.
    Yan R; Sensale-Rodriguez B; Liu L; Jena D; Xing HG
    Opt Express; 2012 Dec; 20(27):28664-71. PubMed ID: 23263104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dome-Patterned Metamaterial Sheets.
    Faber JA; Udani JP; Riley KS; Studart AR; Arrieta AF
    Adv Sci (Weinh); 2020 Nov; 7(22):2001955. PubMed ID: 33240759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates.
    Singh R; Azad AK; Jia QX; Taylor AJ; Chen HT
    Opt Lett; 2011 Apr; 36(7):1230-2. PubMed ID: 21479039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.
    Prinz VY; Naumova EV; Golod SV; Seleznev VA; Bocharov AA; Kubarev VV
    Sci Rep; 2017 Mar; 7():43334. PubMed ID: 28256587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile.
    Sim HJ; Choi C; Kim SH; Kim KM; Lee CJ; Kim YT; Lepró X; Baughman RH; Kim SJ
    Sci Rep; 2016 Oct; 6():35153. PubMed ID: 27725779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optically implemented broadband blueshift switch in the terahertz regime.
    Shen NH; Massaouti M; Gokkavas M; Manceau JM; Ozbay E; Kafesaki M; Koschny T; Tzortzakis S; Soukoulis CM
    Phys Rev Lett; 2011 Jan; 106(3):037403. PubMed ID: 21405297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly tunable optical activity in planar achiral terahertz metamaterials.
    Singh R; Plum E; Zhang W; Zheludev NI
    Opt Express; 2010 Jun; 18(13):13425-30. PubMed ID: 20588473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials.
    Wang R; Xu W; Chen D; Zhou R; Wang Q; Gao W; Kono J; Xie L; Ying Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40629-40634. PubMed ID: 32805801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-tunable dual-layer terahertz metamaterials.
    Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X
    Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene-based hyperbolic metamaterial as a switchable reflection modulator.
    Pianelli A; Kowerdziej R; Dudek M; Sielezin K; Olifierczuk M; Parka J
    Opt Express; 2020 Mar; 28(5):6708-6718. PubMed ID: 32225912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chalcogenide Phase Change Material for Active Terahertz Photonics.
    Pitchappa P; Kumar A; Prakash S; Jani H; Venkatesan T; Singh R
    Adv Mater; 2019 Mar; 31(12):e1808157. PubMed ID: 30687971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors.
    Jin ZH; Liu YL; Chen JJ; Cai SL; Xu JQ; Huang WH
    Anal Chem; 2017 Feb; 89(3):2032-2038. PubMed ID: 28029034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial.
    Yang J; Wang P; Shi T; Gao S; Lu H; Yin Z; Lai W; Deng G
    Opt Express; 2019 Sep; 27(19):27039-27045. PubMed ID: 31674572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.