These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22688846)

  • 1. Chemoselective Staudinger-phosphite reaction of symmetrical glycosyl-phosphites with azido-peptides and polygycerols.
    Böhrsch V; Mathew T; Zieringer M; Vallée MR; Artner LM; Dernedde J; Haag R; Hackenberger CP
    Org Biomol Chem; 2012 Aug; 10(30):6211-6. PubMed ID: 22688846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoramidate-peptide synthesis by solution- and solid-phase Staudinger-phosphite reactions.
    Serwa RA; Swiecicki JM; Homann D; Hackenberger CP
    J Pept Sci; 2010 Oct; 16(10):563-7. PubMed ID: 20862723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific functionalisation of proteins by a Staudinger-type reaction using unsymmetrical phosphites.
    Böhrsch V; Serwa R; Majkut P; Krause E; Hackenberger CP
    Chem Commun (Camb); 2010 May; 46(18):3176-8. PubMed ID: 20424765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions.
    Nischan N; Kasper MA; Mathew T; Hackenberger CP
    Org Biomol Chem; 2016 Aug; 14(31):7500-8. PubMed ID: 27424660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins.
    Serwa R; Wilkening I; Del Signore G; Mühlberg M; Claussnitzer I; Weise C; Gerrits M; Hackenberger CP
    Angew Chem Int Ed Engl; 2009; 48(44):8234-9. PubMed ID: 19637176
    [No Abstract]   [Full Text] [Related]  

  • 6. Stereoselective synthesis of alpha-glycosyl phosphites and phosphoramidites via O-selective glycosylation of H-phosphonate derivatives.
    Matsumura F; Oka N; Wada T
    Org Lett; 2008 Nov; 10(22):5297-300. PubMed ID: 18954069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific modification of proteins by the staudinger-phosphite reaction.
    Majkut P; Böhrsch V; Serwa R; Gerrits M; Hackenberger CP
    Methods Mol Biol; 2012; 794():241-9. PubMed ID: 21956567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of C-terminal glycopeptides from resin-bound glycosyl azides via a modified Staudinger reaction.
    Malkinson JP; Falconer RA; Toth I
    J Org Chem; 2000 Aug; 65(17):5249-52. PubMed ID: 10993353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimethylsilylnitrate-trimethylsilyl azide: a novel reagent system for the synthesis of 2-deoxyglycosyl azides from glycals. Application in the synthesis of 2-deoxy-beta-N-glycopeptides.
    Reddy BG; Madhusudanan KP; Vankar YD
    J Org Chem; 2004 Apr; 69(7):2630-3. PubMed ID: 15049677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staudinger-phosphonite reactions for the chemoselective transformation of azido-containing peptides and proteins.
    Vallée MR; Majkut P; Wilkening I; Weise C; Müller G; Hackenberger CP
    Org Lett; 2011 Oct; 13(20):5440-3. PubMed ID: 21958352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective N-glycosylation by Staudinger ligation.
    He Y; Hinklin RJ; Chang J; Kiessling LL
    Org Lett; 2004 Nov; 6(24):4479-82. PubMed ID: 15548055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific DNA labeling by Staudinger ligation.
    Weisbrod SH; Baccaro A; Marx A
    Methods Mol Biol; 2011; 751():195-207. PubMed ID: 21674332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traceless Staudinger ligation of glycosyl azides with triaryl phosphines: stereoselective synthesis of glycosyl amides.
    Bianchi A; Bernardi A
    J Org Chem; 2006 Jun; 71(12):4565-77. PubMed ID: 16749790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel three-component route to diastereoselective synthesis of trisubstituted vinylphosphonates using phosphites, acetylenic esters, and aroyl chlorides.
    Rostamnia S; Alizadeh A; Zhu LG
    J Comb Chem; 2009; 11(1):143-5. PubMed ID: 19099427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical synthesis of mouse pro-opiomelanocortin(1-74) by azido-protected glycopeptide ligation via the thioester method.
    Katayama H; Hojo H; Shimizu I; Nakahara Y; Nakahara Y
    Org Biomol Chem; 2010 Apr; 8(8):1966-72. PubMed ID: 20449504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot conversion reactions of glycosyl boranophosphates into glycosyl phosphate derivatives via acyl phosphite intermediates.
    Sato K; Wada T
    Org Biomol Chem; 2016 Nov; 14(47):11092-11095. PubMed ID: 27878161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron(III) chloride as an efficient catalyst for stereoselective synthesis of glycosyl azides and a cocatalyst with Cu(0) for the subsequent click chemistry.
    Salunke SB; Babu NS; Chen CT
    Chem Commun (Camb); 2011 Oct; 47(37):10440-2. PubMed ID: 21842053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides.
    Gelman D; Jiang L; Buchwald SL
    Org Lett; 2003 Jun; 5(13):2315-8. PubMed ID: 12816437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly enantioselective 1,4-addition of diethyl phosphite to enones using a dinuclear Zn catalyst.
    Zhao D; Yuan Y; Chan AS; Wang R
    Chemistry; 2009; 15(12):2738-41. PubMed ID: 19212992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid glycosylations under extremely mild acidic conditions. Use of ammonium salts to activate glycosyl phosphites via P-protonation.
    Matsumura F; Tatsumi S; Oka N; Wada T
    Carbohydr Res; 2010 Jun; 345(9):1211-5. PubMed ID: 20435299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.