These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22688852)

  • 41. Growing crops for space explorers on the moon, Mars, or in space.
    Salisbury FB
    Adv Space Biol Med; 1999; 7():131-62. PubMed ID: 10660775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Antarctic cryptoendolithic ecosystem: relevance to exobiology.
    Friedmann EI; Ocampo-Friedmann R
    Orig Life; 1984; 14(1-4):771-6. PubMed ID: 6462703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Life on Mars].
    McKay CP
    Recherche; 1990 Oct; 21(225):1216-24, 35. PubMed ID: 11538272
    [No Abstract]   [Full Text] [Related]  

  • 44. Extreme environments and exobiology.
    Friedmann EI
    Plant Biosyst; 1993; 127(3):369-76. PubMed ID: 11539430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Warning! A crucial period of searching for life on Mars--why international criterion for space quarantine is now required].
    Koike J
    Biol Sci Space; 1996 Dec; 10(4):283-8. PubMed ID: 11540349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions.
    de Vera JP; Horneck G; Rettberg P; Ott S
    Adv Space Res; 2004; 33(8):1236-43. PubMed ID: 15806704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lichens survive in space: results from the 2005 LICHENS experiment.
    Sancho LG; de la Torre R; Horneck G; Ascaso C; de Los Rios A; Pintado A; Wierzchos J; Schuster M
    Astrobiology; 2007 Jun; 7(3):443-54. PubMed ID: 17630840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection.
    Tauscher C; Schuerger AC; Nicholson WL
    Astrobiology; 2006 Aug; 6(4):592-605. PubMed ID: 16916285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets.
    Leuko S; Bohmeier M; Hanke F; Böettger U; Rabbow E; Parpart A; Rettberg P; de Vera JP
    Front Microbiol; 2017; 8():1680. PubMed ID: 28966605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions.
    Podolich O; Zaets I; Kukharenko O; Orlovska I; Reva O; Khirunenko L; Sosnin M; Haidak A; Shpylova S; Rabbow E; Skoryk M; Kremenskoy M; Demets R; Kozyrovska N; de Vera JP
    Astrobiology; 2017 May; 17(5):459-469. PubMed ID: 28520475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overview of the Martian radiation environment experiment.
    Zeitlin C; Cleghorn T; Cucinotta F; Saganti P; Andersen V; Lee K; Pinsky L; Atwell W; Turner R; Badhwar G
    Adv Space Res; 2004; 33(12):2204-10. PubMed ID: 15791732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of fungal biomolecules after Low Earth Orbit exposure: a testbed for the next Moon missions.
    Cassaro A; Pacelli C; Baqué M; Cavalazzi B; Gasparotto G; Saladino R; Botta L; Böttger U; Rabbow E; de Vera JP; Onofri S
    Environ Microbiol; 2022 Jul; 24(7):2938-2950. PubMed ID: 35437941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular Responses of the Lichen
    de la Torre Noetzel R; Miller AZ; de la Rosa JM; Pacelli C; Onofri S; García Sancho L; Cubero B; Lorek A; Wolter D; de Vera JP
    Front Microbiol; 2018; 9():308. PubMed ID: 29556220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica.
    Coleine C; Biagioli F; de Vera JP; Onofri S; Selbmann L
    Environ Microbiol; 2021 Jul; 23(7):4002-4016. PubMed ID: 33538384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dried Biofilms of Desert Strains of
    Billi D; Staibano C; Verseux C; Fagliarone C; Mosca C; Baqué M; Rabbow E; Rettberg P
    Astrobiology; 2019 Aug; 19(8):1008-1017. PubMed ID: 30741568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Space Flight Factor on Dormant Stages in Aquatic Organisms: A Review of International Space Station and Terrestrial Experiments.
    Alekseev VR; Hwang JS; Levinskikh MA
    Life (Basel); 2021 Dec; 12(1):. PubMed ID: 35054440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Testing a Mars science outpost in the Antarctic dry valleys.
    Andersen DT; McKay CP; Wharton RA; Rummel JD
    Adv Space Res; 1992; 12(5):205-9. PubMed ID: 11537065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Antarctic research outpost as a model for planetary exploration.
    Andersen DT; McKay CP; Wharton RA; Rummel JD
    J Br Interplanet Soc; 1990; 43():499-504. PubMed ID: 11539799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein patterns of black fungi under simulated Mars-like conditions.
    Zakharova K; Marzban G; de Vera JP; Lorek A; Sterflinger K
    Sci Rep; 2014 May; 4():5114. PubMed ID: 24870977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.