These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22689267)

  • 21. Energy-dependent regulation of cell structure by AMP-activated protein kinase.
    Lee JH; Koh H; Kim M; Kim Y; Lee SY; Karess RE; Lee SH; Shong M; Kim JM; Kim J; Chung J
    Nature; 2007 Jun; 447(7147):1017-20. PubMed ID: 17486097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of ploidy and senescence by the AMPK-related kinase NUAK1.
    Humbert N; Navaratnam N; Augert A; Da Costa M; Martien S; Wang J; Martinez D; Abbadie C; Carling D; de Launoit Y; Gil J; Bernard D
    EMBO J; 2010 Jan; 29(2):376-86. PubMed ID: 19927127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4.
    Yamada D; Pérez-Torrado R; Filion G; Caly M; Jammart B; Devignot V; Sasai N; Ravassard P; Mallet J; Sastre-Garau X; Schmitz ML; Defossez PA
    Oncogene; 2009 Jul; 28(27):2535-44. PubMed ID: 19448668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits.
    Daniel T; Carling D
    Biochem J; 2002 Aug; 365(Pt 3):629-38. PubMed ID: 11971761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of recombinant Xenopus MAP kinase kinases mutated at potential phosphorylation sites.
    Gotoh Y; Matsuda S; Takenaka K; Hattori S; Iwamatsu A; Ishikawa M; Kosako H; Nishida E
    Oncogene; 1994 Jul; 9(7):1891-8. PubMed ID: 8208535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation.
    Hou X; Liu JE; Liu W; Liu CY; Liu ZY; Sun ZY
    Oncogene; 2011 Jun; 30(26):2933-42. PubMed ID: 21317932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism.
    Martin JB; Muccioli M; Herman K; Finnell RH; Plageman TF
    Biol Open; 2019 Jan; 8(1):. PubMed ID: 30670450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hinge point emergence in mammalian spinal neurulation.
    de Goederen V; Vetter R; McDole K; Iber D
    Proc Natl Acad Sci U S A; 2022 May; 119(20):e2117075119. PubMed ID: 35561223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure.
    Harris MJ; Juriloff DM
    Birth Defects Res A Clin Mol Teratol; 2010 Aug; 88(8):653-69. PubMed ID: 20740593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification and localization of expression of the retinoic acid receptor-beta and -gamma mRNA isoforms during neurulation in mouse embryos with or without spina bifida.
    Mao GE; Collins MD
    Teratology; 2002 Dec; 66(6):331-43. PubMed ID: 12486767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Point mutation at the Nbs1 Threonine 278 site does not affect mouse development, but compromises the Chk2 and Smc1 phosphorylation after DNA damage.
    Li T; Wang ZQ
    Mech Ageing Dev; 2011 Aug; 132(8-9):382-8. PubMed ID: 21664921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. H-ras inhibits RhoA/ROCK leading to a decrease in the basal tone in the internal anal sphincter.
    de Godoy MA; Patel CA; Waldman SA; Katsuki M; Regan RF; Rattan S
    Gastroenterology; 2007 Apr; 132(4):1401-9. PubMed ID: 17408635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice.
    Régnier CH; Masson R; Kedinger V; Textoris J; Stoll I; Chenard MP; Dierich A; Tomasetto C; Rio MC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5585-90. PubMed ID: 11943846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Neurulation continues: the parade commander is...apical constriction].
    Korzh V
    Ontogenez; 2014; 45(4):240-9. PubMed ID: 25735147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lulu regulates Shroom-induced apical constriction during neural tube closure.
    Chu CW; Gerstenzang E; Ossipova O; Sokol SY
    PLoS One; 2013; 8(11):e81854. PubMed ID: 24282618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase.
    Meng Y; Takahashi H; Meng J; Zhang Y; Lu G; Asrar S; Nakamura T; Jia Z
    Neuropharmacology; 2004 Oct; 47(5):746-54. PubMed ID: 15458846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure.
    Baldwin AT; Kim JH; Wallingford JB
    Dev Biol; 2022 Nov; 491():105-112. PubMed ID: 36113571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuak kinase signaling in development and disease of the central nervous system.
    Bennison SA; Liu X; Toyo-Oka K
    Cell Signal; 2022 Dec; 100():110472. PubMed ID: 36122883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-Autonomous Ca(2+) Flashes Elicit Pulsed Contractions of an Apical Actin Network to Drive Apical Constriction during Neural Tube Closure.
    Christodoulou N; Skourides PA
    Cell Rep; 2015 Dec; 13(10):2189-202. PubMed ID: 26673322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.