These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22689324)

  • 21. Origin and Prediction of Highly Specific Bond Cleavage Sites in the Thermal Activation of Intact Protein Ions.
    Wang H; Leeming MG; Ho J; Donald WA
    Chemistry; 2019 Jan; 25(3):823-834. PubMed ID: 30328640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation.
    Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S
    Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence elucidation of an unknown cyclic peptide of high doping potential by ETD and CID tandem mass spectrometry.
    Guan F; Uboh CE; Soma LR; Rudy J
    J Am Soc Mass Spectrom; 2011 Apr; 22(4):718-30. PubMed ID: 21472610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A unique approach to the mobile proton model: influence of charge distribution on peptide fragmentation.
    Sun F; Liu R; Zong W; Tian Y; Wang M; Zhang P
    J Phys Chem B; 2010 May; 114(19):6350-3. PubMed ID: 20415484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precursor charge state prediction for electron transfer dissociation tandem mass spectra.
    Sharma V; Eng JK; Feldman S; von Haller PD; MacCoss MJ; Noble WS
    J Proteome Res; 2010 Oct; 9(10):5438-44. PubMed ID: 20731383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective cleavage of protonated penetratin and its substitutes under low-energy collision-induced dissociation condition.
    Peng J; Zu L; Fang W; Huang L; Wang Y; He D
    J Mass Spectrom; 2010 Jun; 45(6):627-34. PubMed ID: 20527031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of c1 fragment ions in collision-induced dissociation of glutamine-containing peptide ions: a tip for de novo sequencing.
    Lee YJ; Lee YM
    Rapid Commun Mass Spectrom; 2004; 18(18):2069-76. PubMed ID: 15378720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.
    Xia Y; Liang X; McLuckey SA
    Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors that influence fragmentation behavior of N-linked glycopeptide ions.
    Seipert RR; Dodds ED; Clowers BH; Beecroft SM; German JB; Lebrilla CB
    Anal Chem; 2008 May; 80(10):3684-92. PubMed ID: 18363335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radical stability directs electron capture and transfer dissociation of β-amino acids in peptides.
    Ben Hamidane H; Vorobyev A; Larregola M; Lukaszuk A; Tourwé D; Lavielle S; Karoyan P; Tsybin YO
    Chemistry; 2010 Apr; 16(15):4612-22. PubMed ID: 20235239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryogenic Spectroscopy and Quantum Molecular Dynamics Determine the Structure of Cyclic Intermediates Involved in Peptide Sequence Scrambling.
    Aseev O; Perez MA; Rothlisberger U; Rizzo TR
    J Phys Chem Lett; 2015 Jul; 6(13):2524-9. PubMed ID: 26266729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping the tandem mass spectrometric characteristics of citrulline-containing peptides.
    Steckel A; Uray K; Turiák L; Gömöry Á; Drahos L; Hudecz F; Schlosser G
    Rapid Commun Mass Spectrom; 2018 Jun; 32(11):844-850. PubMed ID: 29575159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.
    Guan X; Brownstein NC; Young NL; Marshall AG
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):207-217. PubMed ID: 27813191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge-separation reactions of doubly-protonated peptides: effect of peptide chain length.
    Harrison AG
    J Am Soc Mass Spectrom; 2009 Oct; 20(10):1890-5. PubMed ID: 19651525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton transfer reactions for improved peptide characterisation.
    Rožman M; Schneider A; Gaskell SJ
    J Mass Spectrom; 2011 Jun; 46(6):529-34. PubMed ID: 21630380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The radical ion chemistry of S-nitrosylated peptides.
    Jones AW; Winn PJ; Cooper HJ
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments.
    Molina ER; Ortiz D; Salpin JY; Spezia R
    J Mass Spectrom; 2015 Dec; 50(12):1340-51. PubMed ID: 26634967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abundant b-type ions produced in electron capture dissociation of peptides without basic amino acid residues.
    Liu H; Håkansson K
    J Am Soc Mass Spectrom; 2007 Nov; 18(11):2007-13. PubMed ID: 17904379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.