These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22689324)

  • 41. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton transfer reactions for improved peptide characterisation.
    Rožman M; Schneider A; Gaskell SJ
    J Mass Spectrom; 2011 Jun; 46(6):529-34. PubMed ID: 21630380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The radical ion chemistry of S-nitrosylated peptides.
    Jones AW; Winn PJ; Cooper HJ
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments.
    Molina ER; Ortiz D; Salpin JY; Spezia R
    J Mass Spectrom; 2015 Dec; 50(12):1340-51. PubMed ID: 26634967
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abundant b-type ions produced in electron capture dissociation of peptides without basic amino acid residues.
    Liu H; Håkansson K
    J Am Soc Mass Spectrom; 2007 Nov; 18(11):2007-13. PubMed ID: 17904379
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Charge-state-dependent sequence analysis of protonated ubiquitin ions via ion trap tandem mass spectrometry.
    Reid GE; Wu J; Chrisman PA; Wells JM; McLuckey SA
    Anal Chem; 2001 Jul; 73(14):3274-81. PubMed ID: 11476225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analyzing internal fragmentation of electrosprayed ubiquitin ions during beam-type collisional dissociation.
    Durbin KR; Skinner OS; Fellers RT; Kelleher NL
    J Am Soc Mass Spectrom; 2015 May; 26(5):782-7. PubMed ID: 25716753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps.
    Madsen JA; Brodbelt JS
    J Am Soc Mass Spectrom; 2009 Mar; 20(3):349-58. PubMed ID: 19036605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collision-induced reporter fragmentations for identification of covalently modified peptides.
    Hung CW; Schlosser A; Wei J; Lehmann WD
    Anal Bioanal Chem; 2007 Oct; 389(4):1003-16. PubMed ID: 17690871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of the MIDAS approach for analysis of lysine acetylation sites.
    Evans CA; Griffiths JR; Unwin RD; Whetton AD; Corfe BM
    Methods Mol Biol; 2013; 981():25-36. PubMed ID: 23381851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of CID-cleavable protein cross-linkers: identical mass modifications for simpler sequence analysis.
    Kandur WV; Kao A; Vellucci D; Huang L; Rychnovsky SD
    Org Biomol Chem; 2015 Oct; 13(38):9793-807. PubMed ID: 26269432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.
    Nam J; Kwon H; Jang I; Jeon A; Moon J; Lee SY; Kang D; Han SY; Moon B; Oh HB
    J Mass Spectrom; 2015 Feb; 50(2):378-87. PubMed ID: 25800020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode.
    Cook SL; Jackson GP
    J Am Soc Mass Spectrom; 2011 Jun; 22(6):1088-99. PubMed ID: 21953050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance characteristics of electron transfer dissociation mass spectrometry.
    Good DM; Wirtala M; McAlister GC; Coon JJ
    Mol Cell Proteomics; 2007 Nov; 6(11):1942-51. PubMed ID: 17673454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide fragmentation induced by radicals at atmospheric pressure.
    Vilkov AN; Laiko VV; Doroshenko VM
    J Mass Spectrom; 2009 Apr; 44(4):477-84. PubMed ID: 19034885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparison of energy-resolved vibrational activation/dissociation characteristics of protonated and sodiated high mannose N-glycopeptides.
    Aboufazeli F; Kolli V; Dodds ED
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):587-95. PubMed ID: 25582509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of basic residues in the fragmentation process of the lysine rich cell-penetrating peptide TP10.
    Xue G; Liu Z; Wang L; Zu L
    J Mass Spectrom; 2015 Jan; 50(1):220-7. PubMed ID: 25601696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum mechanical approach.
    McCormack AL; Somogyi A; Dongré AR; Wysocki VH
    Anal Chem; 1993 Oct; 65(20):2859-72. PubMed ID: 8250266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.