These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related]
6. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
7. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Jiang W; Cipriano AF; Tian Q; Zhang C; Lopez M; Sallee A; Lin A; Cortez Alcaraz MC; Wu Y; Zheng Y; Liu H Acta Biomater; 2018 May; 72():407-423. PubMed ID: 29626698 [TBL] [Abstract][Full Text] [Related]
9. Peri-implant tissue response and biodegradation performance of a Mg-1.0Ca-0.5Sr alloy in rat tibia. Berglund IS; Jacobs BY; Allen KD; Kim SE; Pozzi A; Allen JB; Manuel MV Mater Sci Eng C Mater Biol Appl; 2016 May; 62():79-85. PubMed ID: 26952400 [TBL] [Abstract][Full Text] [Related]
10. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Bornapour M; Celikin M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Gu XN; Xie XH; Li N; Zheng YF; Qin L Acta Biomater; 2012 Jul; 8(6):2360-74. PubMed ID: 22387336 [TBL] [Abstract][Full Text] [Related]
12. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. Guan RG; Johnson I; Cui T; Zhao T; Zhao ZY; Li X; Liu H J Biomed Mater Res A; 2012 Apr; 100(4):999-1015. PubMed ID: 22307984 [TBL] [Abstract][Full Text] [Related]
13. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
14. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification. Zhao C; Pan F; Zhao S; Pan H; Song K; Tang A Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():245-51. PubMed ID: 26046288 [TBL] [Abstract][Full Text] [Related]
15. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Munir K; Lin J; Wen C; Wright PFA; Li Y Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958 [TBL] [Abstract][Full Text] [Related]
16. Differential apoptotic response of MC3T3-E1 pre-osteoblasts to biodegradable magnesium alloys in an in vitro direct culture model. Bonyadi Rad E; Mostofi S; Katschnig M; Schmutz P; Pawelkiewicz M; Willumeit-Römer R; Schäfer U; Weinberg A J Mater Sci Mater Med; 2017 Sep; 28(10):155. PubMed ID: 28875381 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Lin J; Tong X; Sun Q; Luan Y; Zhang D; Shi Z; Wang K; Lin J; Li Y; Dargusch M; Wen C Acta Biomater; 2020 Oct; 115():432-446. PubMed ID: 32853807 [TBL] [Abstract][Full Text] [Related]
18. Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials. Hagihara K; Fujii K; Matsugaki A; Nakano T Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4101-11. PubMed ID: 23910320 [TBL] [Abstract][Full Text] [Related]
20. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Li H; He W; Pang S; Liaw PK; Zhang T Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():632-641. PubMed ID: 27524063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]