BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22689468)

  • 61. Collagen Modified Anisotropic PLA Scaffold as a Base for Peripheral Nerve Regeneration.
    Ma J; Li J; Hu S; Wang X; Li M; Xie J; Shi Q; Li B; Saijilafu ; Chen H
    Macromol Biosci; 2022 Jul; 22(7):e2200119. PubMed ID: 35526091
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats.
    Berrocal YA; Almeida VW; Gupta R; Levi AD
    J Neurosurg; 2013 Sep; 119(3):720-32. PubMed ID: 23746104
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Short- and long-term peripheral nerve regeneration using a poly-lactic-co-glycolic-acid scaffold containing nerve growth factor and glial cell line-derived neurotrophic factor releasing microspheres.
    de Boer R; Borntraeger A; Knight AM; Hébert-Blouin MN; Spinner RJ; Malessy MJ; Yaszemski MJ; Windebank AJ
    J Biomed Mater Res A; 2012 Aug; 100(8):2139-46. PubMed ID: 22615148
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap.
    Mohammad J; Shenaq J; Rabinovsky E; Shenaq S
    Plast Reconstr Surg; 2000 Feb; 105(2):660-6. PubMed ID: 10697174
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation.
    Pierucci A; de Duek EA; de Oliveira AL
    Tissue Eng Part A; 2008 May; 14(5):595-606. PubMed ID: 18399734
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel technique for peripheral nerve repair.
    Scharpf J; Meirer R; Zielinski M; Unsal M; Ramineni P; Nair D; Siemionow M
    Laryngoscope; 2003 Jan; 113(1):95-101. PubMed ID: 12514390
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Study on using a new biodegradable conduit to repairing rat's peripheral nerve defect].
    Xie F; Li QF; Zhao LS
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2005 Jul; 21(4):295-8. PubMed ID: 16248529
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of pore size of D, L-polylactic acid as bone repair material on bone regeneration.
    Zhang L; Jin AM; Guo ZM; Min SX; Quan DP; Lu ZJ
    Di Yi Jun Yi Da Xue Xue Bao; 2002 May; 22(5):423-6. PubMed ID: 12390703
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Large amounts of polylactic acid in contact with divided nerve sheaths have no adverse effects on regeneration.
    de Medinaceli L; al Khoury R; Merle M
    J Reconstr Microsurg; 1995 Jan; 11(1):43-9. PubMed ID: 7714879
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Preliminary study of the facial nerve regeneration in the chamber: the influence of myelin basic protein].
    Luo W; Lin D; Li Y
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Feb; 36(1):14-7. PubMed ID: 12761899
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electrophysiological assessment of a peptide amphiphile nanofiber nerve graft for facial nerve repair.
    Greene JJ; McClendon MT; Stephanopoulos N; Álvarez Z; Stupp SI; Richter CP
    J Tissue Eng Regen Med; 2018 Jun; 12(6):1389-1401. PubMed ID: 29701919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Effect of fibrin on nerve regeneration in a silicone chamber].
    Chen YS
    J Formos Med Assoc; 1992 Sep; 91 Suppl 3():S246-50. PubMed ID: 1362912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The influence of exogenous nerve growth factor on inferior alveolar nerve regeneration in silicone tubes.
    Bu SS; Li JR; Hu CZ; Zhao YF
    Chin J Dent Res; 1999 Dec; 2(3-4):44-8. PubMed ID: 10863416
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functional recovery guided by an electrospun silk fibroin conduit after sciatic nerve injury in rats.
    Park SY; Ki CS; Park YH; Lee KG; Kang SW; Kweon HY; Kim HJ
    J Tissue Eng Regen Med; 2015 Jan; 9(1):66-76. PubMed ID: 23086833
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Preparation and biocompatibility of a novel biomimetic osteochondral scaffold: collagen-chitosan/nano-hydroxyapatite-collagen-polylactic acid].
    Lin J; Lai J; Lin W; Wu C; Xu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Aug; 26(8):1001-6. PubMed ID: 23012939
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects.
    Luís AL; Rodrigues JM; Geuna S; Amado S; Shirosaki Y; Lee JM; Fregnan F; Lopes MA; Veloso AP; Ferreira AJ; Santos JD; Armada-Da-silva PA; Varejão AS; Maurício AC
    Tissue Eng Part A; 2008 Jun; 14(6):979-93. PubMed ID: 18447635
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fabrication of bioactive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap.
    Ni HC; Tseng TC; Chen JR; Hsu SH; Chiu IM
    Biofabrication; 2013 Sep; 5(3):035010. PubMed ID: 23880639
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel.
    Nakayama K; Takakuda K; Koyama Y; Itoh S; Wang W; Mukai T; Shirahama N
    Artif Organs; 2007 Jul; 31(7):500-8. PubMed ID: 17584474
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube.
    Midha R; Munro CA; Dalton PD; Tator CH; Shoichet MS
    J Neurosurg; 2003 Sep; 99(3):555-65. PubMed ID: 12959445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.