These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22689750)

  • 1. Statistical model-based testing to evaluate the recurrence of genomic aberrations.
    Niida A; Imoto S; Shimamura T; Miyano S
    Bioinformatics; 2012 Jun; 28(12):i115-20. PubMed ID: 22689750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.
    Guttman M; Mies C; Dudycz-Sulicz K; Diskin SJ; Baldwin DA; Stoeckert CJ; Grant GR
    PLoS Genet; 2007 Aug; 3(8):e143. PubMed ID: 17722985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive study of tumour single nucleotide polymorphism array data reveals significant driver aberrations and disrupted signalling pathways in human hepatocellular cancer.
    Liu Y; Wang M; Feng H; Li A
    IET Syst Biol; 2014 Apr; 8(2):24-32. PubMed ID: 25014222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using circulating cell-free DNA to monitor personalized cancer therapy.
    Oellerich M; Schütz E; Beck J; Kanzow P; Plowman PN; Weiss GJ; Walson PD
    Crit Rev Clin Lab Sci; 2017 May; 54(3):205-218. PubMed ID: 28393575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAFFYS: An Integrated Tool for Comprehensive Analysis of Genomic Aberrations in Tumor Samples.
    Liu Y; Li A; Feng H; Wang M
    PLoS One; 2015; 10(6):e0129835. PubMed ID: 26111017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DiNAMIC: a method to identify recurrent DNA copy number aberrations in tumors.
    Walter V; Nobel AB; Wright FA
    Bioinformatics; 2011 Mar; 27(5):678-85. PubMed ID: 21183584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GREVE: Genomic Recurrent Event ViEwer to assist the identification of patterns across individual cancer samples.
    Cazier JB; Holmes CC; Broxholme J
    Bioinformatics; 2012 Nov; 28(22):2981-2. PubMed ID: 22962342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic landscape of pancreatic neuroendocrine tumors.
    Gebauer N; Schmidt-Werthern C; Bernard V; Feller AC; Keck T; Begum N; Rades D; Lehnert H; Brabant G; Thorns C
    World J Gastroenterol; 2014 Dec; 20(46):17498-506. PubMed ID: 25516664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes.
    Kim TM; Xi R; Luquette LJ; Park RW; Johnson MD; Park PJ
    Genome Res; 2013 Feb; 23(2):217-27. PubMed ID: 23132910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel framework for analyzing somatic copy number aberrations and tumor subclones for paired heterogeneous tumor samples.
    Xia H; Li A; Yu Z; Liu X; Feng H
    Biomed Mater Eng; 2015; 26 Suppl 1():S1845-53. PubMed ID: 26405956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions in cancer datasets.
    Bicciato S; Spinelli R; Zampieri M; Mangano E; Ferrari F; Beltrame L; Cifola I; Peano C; Solari A; Battaglia C
    Nucleic Acids Res; 2009 Aug; 37(15):5057-70. PubMed ID: 19542187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the DNA copy number aberration patterns in observational high-throughput cancer data.
    van Wieringen WN; Roś BP; Wilting SM
    Stat Appl Genet Mol Biol; 2013 Apr; 12(2):143-74. PubMed ID: 23735435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNAnova: a new approach for finding recurrent copy number abnormalities in cancer SNP microarray data.
    Ivakhno S; Tavaré S
    Bioinformatics; 2010 Jun; 26(11):1395-402. PubMed ID: 20403815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate driver genes in focal chromosomal aberrations of stage II colon cancer.
    Brosens RP; Haan JC; Carvalho B; Rustenburg F; Grabsch H; Quirke P; Engel AF; Cuesta MA; Maughan N; Flens M; Meijer GA; Ylstra B
    J Pathol; 2010 Aug; 221(4):411-24. PubMed ID: 20593488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JISTIC: identification of significant targets in cancer.
    Sanchez-Garcia F; Akavia UD; Mozes E; Pe'er D
    BMC Bioinformatics; 2010 Apr; 11():189. PubMed ID: 20398270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma.
    Chen CF; Hsu EC; Lin KT; Tu PH; Chang HW; Lin CH; Chen YJ; Gu DL; Lin CH; Wu JY; Chen YT; Hsu MT; Jou YS
    Hepatology; 2010 Nov; 52(5):1690-701. PubMed ID: 20799341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate paired sample test for count data.
    Pham TV; Jimenez CR
    Bioinformatics; 2012 Sep; 28(18):i596-i602. PubMed ID: 22962487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.
    Dalmasso C; Carpentier W; Guettier C; Camilleri-Broët S; Borelli WV; Campos Dos Santos CR; Castaing D; Duclos-Vallée JC; Broët P
    BMC Cancer; 2015 Mar; 15():126. PubMed ID: 25879652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of significant aberrations in cancer genome.
    Yuan X; Yu G; Hou X; Shih IeM; Clarke R; Zhang J; Hoffman EP; Wang RR; Zhang Z; Wang Y
    BMC Genomics; 2012 Jul; 13():342. PubMed ID: 22839576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.