These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 22689753)
1. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs. Lee S; Xing EP Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753 [TBL] [Abstract][Full Text] [Related]
2. A multivariate regression approach to association analysis of a quantitative trait network. Kim S; Sohn KA; Xing EP Bioinformatics; 2009 Jun; 25(12):i204-12. PubMed ID: 19477989 [TBL] [Abstract][Full Text] [Related]
3. Integration of Multi-omics Data for Expression Quantitative Trait Loci (eQTL) Analysis and eQTL Epistasis. Kang M; Gao J Methods Mol Biol; 2020; 2082():157-171. PubMed ID: 31849014 [TBL] [Abstract][Full Text] [Related]
4. Graph-regularized dual Lasso for robust eQTL mapping. Cheng W; Zhang X; Guo Z; Shi Y; Wang W Bioinformatics; 2014 Jun; 30(12):i139-48. PubMed ID: 24931977 [TBL] [Abstract][Full Text] [Related]
5. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package. Kadarmideen HN; Carmelo VAO Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355 [TBL] [Abstract][Full Text] [Related]
6. Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast. Nguyen Ba AN; Lawrence KR; Rego-Costa A; Gopalakrishnan S; Temko D; Michor F; Desai MM Elife; 2022 Feb; 11():. PubMed ID: 35147078 [TBL] [Abstract][Full Text] [Related]
7. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
8. Mapping the genetic architecture of complex traits in experimental populations. Yang J; Zhu J; Williams RW Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962 [TBL] [Abstract][Full Text] [Related]
9. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810 [TBL] [Abstract][Full Text] [Related]
10. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants. Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091 [TBL] [Abstract][Full Text] [Related]
11. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies. Zhang W; Dai X; Wang Q; Xu S; Zhao PX PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861 [TBL] [Abstract][Full Text] [Related]
12. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. Crawford L; Zeng P; Mukherjee S; Zhou X PLoS Genet; 2017 Jul; 13(7):e1006869. PubMed ID: 28746338 [TBL] [Abstract][Full Text] [Related]
13. A network-driven approach for genome-wide association mapping. Lee S; Kong S; Xing EP Bioinformatics; 2016 Jun; 32(12):i164-i173. PubMed ID: 27307613 [TBL] [Abstract][Full Text] [Related]
14. Multi-population GWA mapping via multi-task regularized regression. Puniyani K; Kim S; Xing EP Bioinformatics; 2010 Jun; 26(12):i208-16. PubMed ID: 20529908 [TBL] [Abstract][Full Text] [Related]
15. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
16. High-throughput analysis of epistasis in genome-wide association studies with BiForce. Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535 [TBL] [Abstract][Full Text] [Related]
17. Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. Huang A; Xu S; Cai X BMC Genet; 2013 Feb; 14():5. PubMed ID: 23410082 [TBL] [Abstract][Full Text] [Related]
18. Learning gene networks under SNP perturbations using eQTL datasets. Zhang L; Kim S PLoS Comput Biol; 2014 Feb; 10(2):e1003420. PubMed ID: 24586125 [TBL] [Abstract][Full Text] [Related]
19. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies. Stamp J; DenAdel A; Weinreich D; Crawford L G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672 [TBL] [Abstract][Full Text] [Related]
20. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases. Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]