BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22689769)

  • 1. Lineage-based identification of cellular states and expression programs.
    Hashimoto T; Jaakkola T; Sherwood R; Mazzoni EO; Wichterle H; Gifford D
    Bioinformatics; 2012 Jun; 28(12):i250-7. PubMed ID: 22689769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering sparse transcription factor codes for cell states and state transitions during development.
    Furchtgott LA; Melton S; Menon V; Ramanathan S
    Elife; 2017 Mar; 6():. PubMed ID: 28296636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse robust graph-regularized non-negative matrix factorization based on correntropy.
    Wang CY; Gao YL; Liu JX; Dai LY; Shang J
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050047. PubMed ID: 33410727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.
    Ezzat A; Zhao P; Wu M; Li XL; Kwoh CK
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):646-656. PubMed ID: 26890921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph regularized non-negative matrix factorization with [Formula: see text] norm regularization terms for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2023 Oct; 24(1):375. PubMed ID: 37789278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing algorithms that reconstruct cell lineage trees utilizing information on microsatellite mutations.
    Chapal-Ilani N; Maruvka YE; Spiro A; Reizel Y; Adar R; Shlush LI; Shapiro E
    PLoS Comput Biol; 2013; 9(11):e1003297. PubMed ID: 24244121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning.
    Zeng M; Lu C; Zhang F; Li Y; Wu FX; Li Y; Li M
    Methods; 2020 Jul; 179():73-80. PubMed ID: 32387314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Hyper-Graph Regularized Supervised NMF for Selecting Differentially Expressed Genes and Tumor Classification.
    Wang CY; Yu N; Wu MJ; Gao YL; Liu JX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2375-2383. PubMed ID: 32086220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Sparse Graph-Regularized Singular Value Decomposition Model and Its Application to Genomic Data Analysis.
    Min W; Wan X; Chang TH; Zhang S
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3842-3856. PubMed ID: 33556027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.
    Zhang W; Edwards A; Fan W; Zhu D; Zhang K
    BMC Bioinformatics; 2010 Jun; 11():338. PubMed ID: 20565989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development.
    Stigler B; Chamberlin HM
    BMC Syst Biol; 2012 Jun; 6():77. PubMed ID: 22734688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks.
    Qian Y; Zheng J; Jiang Y; Li S; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integer programming formulation to identify the sparse network architecture governing differentiation of embryonic stem cells.
    Banerjee I; Maiti S; Parashurama N; Yarmush M
    Bioinformatics; 2010 May; 26(10):1332-9. PubMed ID: 20363729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse Graph Regularization Non-Negative Matrix Factorization Based on Huber Loss Model for Cancer Data Analysis.
    Wang CY; Liu JX; Yu N; Zheng CH
    Front Genet; 2019; 10():1054. PubMed ID: 31824556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model for understanding stem cell, trophectoderm and endoderm lineage determination.
    Chickarmane V; Peterson C
    PLoS One; 2008; 3(10):e3478. PubMed ID: 18941526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.