BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 226900)

  • 21. The dynamics of cGMP metabolism in neuroblastoma N1E-115 cells determined by 18O labeling of guanine nucleotide alpha-phosphoryls.
    Graeff RM; Walseth TF; Goldberg ND
    Neurochem Res; 1987 Jun; 12(6):551-60. PubMed ID: 2439934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic nucleotide content of the rat anococcygeus during relaxations induced by drugs or by non-adrenergic, non-cholinergic field stimulation.
    Mirzazadeh S; Hobbs AJ; Tucker JF; Gibson A
    J Pharm Pharmacol; 1991 Apr; 43(4):247-51. PubMed ID: 1676736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form.
    Lavan BE; Lakey T; Houslay MD
    Biochem Pharmacol; 1989 Nov; 38(22):4123-36. PubMed ID: 2480793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus.
    Suvarna NU; O'Donnell JM
    J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism.
    Zhu WH; Majluf-Cruz A; Omburo GA
    Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences and similarities between guanosine 3',5'-cyclic monophosphate phosphodiesterase and adenosine 3',5'-cyclic monophosphate phosphodiesterase activities in neuroblastoma cells in culture.
    Prasad KN; Becker G; Tripathy K
    Proc Soc Exp Biol Med; 1975 Jul; 149(3):757-62. PubMed ID: 167381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-dependent regulation of guanosine 3',5'-monophosphate in renal cortex: effects of ionophore A23187 and tetracaine and evidence for independent control of adenosine 3',5'-monophosphate.
    DeRubertis FR; Craven PA
    Metabolism; 1976 Oct; 25(10):1113-27. PubMed ID: 184365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pig aortic endothelial-cell cyclic nucleotide phosphodiesterases. Use of phosphodiesterase inhibitors to evaluate their roles in regulating cyclic nucleotide levels in intact cells.
    Souness JE; Diocee BK; Martin W; Moodie SA
    Biochem J; 1990 Feb; 266(1):127-32. PubMed ID: 2155604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine.
    Souness JE; Brazdil R; Diocee BK; Jordan R
    Br J Pharmacol; 1989 Nov; 98(3):725-34. PubMed ID: 2480168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The identification and characterization of two cyclic nucleotide phosphodiesterases from bovine adrenal medulla.
    Sabatine JM; Coffee CJ
    Arch Biochem Biophys; 1986 Aug; 249(1):95-105. PubMed ID: 3017224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective phosphodiesterase inhibition and alterations of cardiac function by alkylated xanthines.
    Mushlin P; Boerth RC; Wells JN
    Mol Pharmacol; 1981 Jul; 20(1):179-89. PubMed ID: 6270531
    [No Abstract]   [Full Text] [Related]  

  • 34. Do conventional plasma cyclic nucleotide phosphodiesterase inhibitors really work in all situations?
    Wood PJ; Pao G; Ross G; Smith C
    Clin Chim Acta; 1981 Sep; 115(3):405-8. PubMed ID: 6271425
    [No Abstract]   [Full Text] [Related]  

  • 35. [Pharmacodynamic aspects of theophylline].
    Marmo E
    Clin Ter; 1983 Jul; 106(2):87-94. PubMed ID: 6313282
    [No Abstract]   [Full Text] [Related]  

  • 36. [Modern representations of multiple forms of cyclic nucleotide phosphodiesterases in mammalian tissues].
    Medvedeva MV
    Biokhimiia; 1995 Mar; 60(3):364-86. PubMed ID: 7734612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A prenylated flavonol, sophoflavescenol: a potent and selective inhibitor of cGMP phosphodiesterase 5.
    Shin HJ; Kim HJ; Kwak JH; Chun HO; Kim JH; Park H; Kim DH; Lee YS
    Bioorg Med Chem Lett; 2002 Sep; 12(17):2313-6. PubMed ID: 12161123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic nucleotide phosphodiesterase in heart and aorta of spontaneously hypertensive rats.
    Sharma RV; Bhalla RC
    Biochim Biophys Acta; 1978 Oct; 526(2):479-88. PubMed ID: 214127
    [No Abstract]   [Full Text] [Related]  

  • 39. Papaverine and Ro 20-1724 inhibit cyclic nucleotide phosphodiesterase activity and increase cyclic AMP levels in psoriatic epidermis in vitro.
    Rusin LJ; Duell EA; Voorhees JJ
    J Invest Dermatol; 1978 Aug; 71(2):154-6. PubMed ID: 210235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opposite regulatory effects of cAMP and cGMP on sugar uptake in rat thymocytes.
    Segal J
    Am J Physiol; 1987 May; 252(5 Pt 1):E588-94. PubMed ID: 2437804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.