These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Downregulation of c-Myc in pterygium and cultured pterygial cells. Cui D; Pan Z; Zhang S; Zheng J; Huang Q; Wu K Clin Exp Ophthalmol; 2011 Nov; 39(8):784-92. PubMed ID: 22050566 [TBL] [Abstract][Full Text] [Related]
3. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium. Dong Y; Kase S; Dong Z; Fukuhara J; Tagawa Y; Ishizuka ET; Murata M; Shinmei Y; Ohguchi T; Kanda A; Noda K; Ishida S Int J Mol Med; 2016 Aug; 38(2):545-50. PubMed ID: 27314284 [TBL] [Abstract][Full Text] [Related]
4. mTORC1 regulates apoptosis and cell proliferation in pterygium via targeting autophagy and FGFR3. Liu Y; Xu H; An M Sci Rep; 2017 Aug; 7(1):7339. PubMed ID: 28779179 [TBL] [Abstract][Full Text] [Related]
5. Expression of cell proliferation and apoptosis biomarkers in pterygia and normal conjunctiva. Liang K; Jiang Z; Ding BQ; Cheng P; Huang DK; Tao LM Mol Vis; 2011; 17():1687-93. PubMed ID: 21738398 [TBL] [Abstract][Full Text] [Related]
6. MiR-3175 promotes epithelial-mesenchymal transition by targeting Smad7 in human conjunctiva and pterygium. Zhong X; Tang J; Li H; Shi X; Wu Y; Xia D; Zhang H; Ye J; Wu H FEBS Lett; 2020 Apr; 594(7):1207-1217. PubMed ID: 31774554 [TBL] [Abstract][Full Text] [Related]
7. Increased importin 13 activity is associated with the pathogenesis of pterygium. Xu K; Tao T; Jie J; Lu X; Li X; Mehmood MA; He H; Liu Z; Xiao X; Yang J; Ma JX; Li W; Zhou Y; Liu Z Mol Vis; 2013; 19():604-13. PubMed ID: 23559854 [TBL] [Abstract][Full Text] [Related]
8. Involvement of SPARC and MMP-3 in the pathogenesis of human pterygium. Seet LF; Tong L; Su R; Wong TT Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):587-95. PubMed ID: 22222271 [TBL] [Abstract][Full Text] [Related]
9. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells. Zhu H; Pan Y; Jiang Y; Li J; Zhang Y; Zhang S Hum Reprod; 2019 Apr; 34(4):635-645. PubMed ID: 30715393 [TBL] [Abstract][Full Text] [Related]
10. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. McCauley HA; Liu CY; Attia AC; Wikenheiser-Brokamp KA; Zhang Y; Whitsett JA; Guasch G Development; 2014 Dec; 141(23):4628-39. PubMed ID: 25377551 [TBL] [Abstract][Full Text] [Related]
11. A novel role for Livin in the response to ultraviolet B radiation and pterygium development. Wu SQ; Xu QB; Sheng WY; Su LY; Zhu LW Int J Mol Med; 2020 Apr; 45(4):1103-1111. PubMed ID: 32124942 [TBL] [Abstract][Full Text] [Related]
12. Immunolocalisation of E-cadherin and beta-catenin in human pterygium. Kase S; Osaki M; Sato I; Takahashi S; Nakanishi K; Yoshida K; Ito H; Ohno S Br J Ophthalmol; 2007 Sep; 91(9):1209-12. PubMed ID: 17360734 [TBL] [Abstract][Full Text] [Related]
13. Calcium-binding S100 protein expression in pterygium. Riau AK; Wong TT; Beuerman RW; Tong L Mol Vis; 2009; 15():335-42. PubMed ID: 19223989 [TBL] [Abstract][Full Text] [Related]
14. Upregulation of Transient Receptor Potential Vanilloid Type-1 Channel Activity and Ca2+ Influx Dysfunction in Human Pterygial Cells. Garreis F; Schröder A; Reinach PS; Zoll S; Khajavi N; Dhandapani P; Lucius A; Pleyer U; Paulsen F; Mergler S Invest Ophthalmol Vis Sci; 2016 May; 57(6):2564-77. PubMed ID: 27163769 [TBL] [Abstract][Full Text] [Related]
15. Proteotoxic Stress Desensitizes TGF-beta Signaling Through Receptor Downregulation in Retinal Pigment Epithelial Cells. Tan X; Chen C; Zhu Y; Deng J; Qiu X; Huang S; Shang F; Cheng B; Liu Y Curr Mol Med; 2017; 17(3):189-199. PubMed ID: 28625142 [TBL] [Abstract][Full Text] [Related]
16. Relative quantification of human β‑defensins gene expression in pterygium and normal conjunctiva samples. Abubakar SA; Isa MM; Omar N; Tan SW Mol Med Rep; 2020 Dec; 22(6):4931-4937. PubMed ID: 33174018 [TBL] [Abstract][Full Text] [Related]
17. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling. Narimatsu M; Samavarchi-Tehrani P; Varelas X; Wrana JL Dev Cell; 2015 Mar; 32(5):652-6. PubMed ID: 25758863 [TBL] [Abstract][Full Text] [Related]
18. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. Miranda MZ; Bialik JF; Speight P; Dan Q; Yeung T; Szászi K; Pedersen SF; Kapus A J Biol Chem; 2017 Sep; 292(36):14902-14920. PubMed ID: 28739802 [TBL] [Abstract][Full Text] [Related]
19. Differential expression and function of survivin during the progress of pterygium. Xu YX; Zhang LY; Zou DL; Liu ZS; Shang XM; Wu HP; Zhou Y; He H; Liu ZG Invest Ophthalmol Vis Sci; 2014 Dec; 55(12):8480-7. PubMed ID: 25468890 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways. Vasilaki E; Papadimitriou E; Tajadura V; Ridley AJ; Stournaras C; Kardassis D FASEB J; 2010 Mar; 24(3):891-905. PubMed ID: 19890017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]