These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22690741)

  • 1. Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation.
    Peng B; Zhang Q; Liu X; Ji Y; Demir HV; Huan CH; Sum TC; Xiong Q
    ACS Nano; 2012 Jul; 6(7):6250-9. PubMed ID: 22690741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses.
    De Luca A; Grzelczak MP; Pastoriza-Santos I; Liz-Marzán LM; La Deda M; Striccoli M; Strangi G
    ACS Nano; 2011 Jul; 5(7):5823-9. PubMed ID: 21682326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of plasmon-enhancement on photophysics in upconverting nanoparticles.
    Sun QC; Casamada-Ribot J; Singh V; Mundoor H; Smalyukh II; Nagpal P
    Opt Express; 2014 May; 22(10):11516-27. PubMed ID: 24921273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer.
    Dhama R; Rashed AR; Caligiuri V; El Kabbash M; Strangi G; De Luca A
    Opt Express; 2016 Jun; 24(13):14632-41. PubMed ID: 27410615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-free and active optical negative-index metamaterials.
    Xiao S; Drachev VP; Kildishev AV; Ni X; Chettiar UK; Yuan HK; Shalaev VM
    Nature; 2010 Aug; 466(7307):735-8. PubMed ID: 20686570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organizing core-shell nanostructures: spontaneous accumulation of dye in the core of doped silica nanoparticles.
    Rampazzo E; Bonacchi S; Montalti M; Prodi L; Zaccheroni N
    J Am Chem Soc; 2007 Nov; 129(46):14251-6. PubMed ID: 17958420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray.
    Witlicki EH; Andersen SS; Hansen SW; Jeppesen JO; Wong EW; Jensen L; Flood AH
    J Am Chem Soc; 2010 May; 132(17):6099-107. PubMed ID: 20387841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions.
    Yang ZJ; Antosiewicz TJ; Shegai T
    Opt Express; 2016 Sep; 24(18):20373-81. PubMed ID: 27607644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing the high-energy limit of plasmonics.
    Bisio F; Proietti Zaccaria R; Moroni R; Maidecchi G; Alabastri A; Gonella G; Giglia A; Andolfi L; Nannarone S; Mattera L; Canepa M
    ACS Nano; 2014 Sep; 8(9):9239-47. PubMed ID: 25181497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Core-Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation.
    Lin HI; Yadav K; Shen KC; Haider G; Roy PK; Kataria M; Chang TJ; Li YH; Lin TY; Chen YT; Chen YF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1163-1173. PubMed ID: 30543414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures.
    Caligiuri V; Pezzi L; Veltri A; De Luca A
    ACS Nano; 2017 Jan; 11(1):1012-1025. PubMed ID: 28009498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.