These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 22691281)
1. Fröhlich systems in cellular physiology. Srobár F Prague Med Rep; 2012; 113(2):95-104. PubMed ID: 22691281 [TBL] [Abstract][Full Text] [Related]
2. Impact of mitochondrial electric field on modal occupancy in the Fröhlich model of cellular electromagnetism. Šrobár F Electromagn Biol Med; 2013 Sep; 32(3):401-8. PubMed ID: 23323667 [TBL] [Abstract][Full Text] [Related]
3. Radiating Fröhlich system as a model of cellular electromagnetism. Šrobár F Electromagn Biol Med; 2015; 34(4):355-60. PubMed ID: 25026881 [TBL] [Abstract][Full Text] [Related]
4. Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Reimers JR; McKemmish LK; McKenzie RH; Mark AE; Hush NS Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4219-24. PubMed ID: 19251667 [TBL] [Abstract][Full Text] [Related]
5. Order stability via Fröhlich condensation in bio, eco, and social systems: The quantum-like approach. Khrennikov A Biosystems; 2022 Feb; 212():104593. PubMed ID: 34973355 [TBL] [Abstract][Full Text] [Related]
6. Biophysical aspects of cancer--electromagnetic mechanism. Pokorný J; Hasek J; Vanis J; Jelínek F Indian J Exp Biol; 2008 May; 46(5):310-21. PubMed ID: 18697613 [TBL] [Abstract][Full Text] [Related]
7. Postulates on electromagnetic activity in biological systems and cancer. Pokorný J; Pokorný J; Kobilková J Integr Biol (Camb); 2013 Dec; 5(12):1439-46. PubMed ID: 24166132 [TBL] [Abstract][Full Text] [Related]
8. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Lundholm IV; Rodilla H; Wahlgren WY; Duelli A; Bourenkov G; Vukusic J; Friedman R; Stake J; Schneider T; Katona G Struct Dyn; 2015 Sep; 2(5):054702. PubMed ID: 26798828 [TBL] [Abstract][Full Text] [Related]
15. High-frequency electric field and radiation characteristics of cellular microtubule network. Havelka D; Cifra M; Kučera O; Pokorný J; Vrba J J Theor Biol; 2011 Oct; 286(1):31-40. PubMed ID: 21782830 [TBL] [Abstract][Full Text] [Related]
16. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells. Geesink JH; Meijer DKF Electromagn Biol Med; 2017; 36(4):357-378. PubMed ID: 29164985 [TBL] [Abstract][Full Text] [Related]
17. RF nonlinear interactions in living cells-I: nonequilibrium thermodynamic theory. Balzano Q; Sheppard A Bioelectromagnetics; 2003 Oct; 24(7):473-82. PubMed ID: 12955752 [TBL] [Abstract][Full Text] [Related]
18. Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation. Pietak AM Electromagn Biol Med; 2011 Jun; 30(2):93-107. PubMed ID: 21591894 [TBL] [Abstract][Full Text] [Related]
19. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Vaughan TE; Weaver JC Bioelectromagnetics; 2005 May; 26(4):305-22. PubMed ID: 15832332 [TBL] [Abstract][Full Text] [Related]
20. On Fröhlich's coherent effects in biological systems: influence of carriers and high order dissipative effects. Lauck L; Vasconcellos AR; Luzzi R J Theor Biol; 1992 Sep; 158(1):1-13. PubMed ID: 1474837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]