These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 22691444)
41. A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite. Xia D; Ng TW; An T; Li G; Li Y; Yip HY; Zhao H; Lu A; Wong PK Environ Sci Technol; 2013 Oct; 47(19):11166-73. PubMed ID: 24011214 [TBL] [Abstract][Full Text] [Related]
42. Chemical Changes On, and Through, The Bacterial Envelope in Dimovska Nilsson K; Palm M; Hood J; Sheriff J; Farewell A; Fletcher JS Anal Chem; 2019 Sep; 91(17):11355-11361. PubMed ID: 31359753 [TBL] [Abstract][Full Text] [Related]
43. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli. Ng TW; Chan WL; Lai KM Appl Microbiol Biotechnol; 2018 Apr; 102(7):3327-3336. PubMed ID: 29450618 [TBL] [Abstract][Full Text] [Related]
44. Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mechanism. Zhang L; Qi H; Yan Z; Gu Y; Sun W; Zewde AA Ultrason Sonochem; 2017 Jan; 34():232-238. PubMed ID: 27773240 [TBL] [Abstract][Full Text] [Related]
45. TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Carré G; Hamon E; Ennahar S; Estner M; Lett MC; Horvatovich P; Gies JP; Keller V; Keller N; Andre P Appl Environ Microbiol; 2014 Apr; 80(8):2573-81. PubMed ID: 24532071 [TBL] [Abstract][Full Text] [Related]
46. [Mechanisms regulating the fatty acid pattern of membrane phospholipids (author's transl)]. Okuyama H Seikagaku; 1975 Nov; 47(11):999-1031. PubMed ID: 1107441 [No Abstract] [Full Text] [Related]
47. Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps. Sungkajuntranon K; Sribenjalux P; Supothina S; Chuaybamroong P J Photochem Photobiol B; 2014 Sep; 138():160-71. PubMed ID: 24937435 [TBL] [Abstract][Full Text] [Related]
48. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Wu P; Imlay JA; Shang JK Biomaterials; 2010 Oct; 31(29):7526-33. PubMed ID: 20637502 [TBL] [Abstract][Full Text] [Related]
49. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Klein K; Steinberg R; Fiethen B; Overath P Eur J Biochem; 1971 Apr; 19(3):442-50. PubMed ID: 4928881 [No Abstract] [Full Text] [Related]
50. Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. Dirusso CC; Black PN J Biol Chem; 2004 Nov; 279(48):49563-6. PubMed ID: 15347640 [No Abstract] [Full Text] [Related]
51. Prokaryotic type III pantothenate kinase enhances coenzyme A biosynthesis in Escherichia coli. Ogata Y; Chohnan S J Gen Appl Microbiol; 2015; 61(6):266-9. PubMed ID: 26782658 [No Abstract] [Full Text] [Related]
52. Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Yao Z; Davis RM; Kishony R; Kahne D; Ruiz N Proc Natl Acad Sci U S A; 2012 Sep; 109(38):E2561-8. PubMed ID: 22908292 [TBL] [Abstract][Full Text] [Related]
53. The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Bosshard F; Bucheli M; Meur Y; Egli T Microbiology (Reading); 2010 Jul; 156(Pt 7):2006-2015. PubMed ID: 20395268 [TBL] [Abstract][Full Text] [Related]
55. The role of bacterial cell envelope structures in acid stress resistance in E. coli. Li Z; Jiang B; Zhang X; Yang Y; Hardwidge PR; Ren W; Zhu G Appl Microbiol Biotechnol; 2020 Apr; 104(7):2911-2921. PubMed ID: 32067056 [TBL] [Abstract][Full Text] [Related]
56. An analysis of the mechanism underlying photocatalytic disinfection based on integrated metabolic networks and transcriptional data. Liang XL; Liang ZM; Wang S; Chen XH; Ruan Y; Zhang QY; Zhang HY J Environ Sci (China); 2020 Jun; 92():28-37. PubMed ID: 32430131 [TBL] [Abstract][Full Text] [Related]
57. Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Ng TW; Ip M; Chao CYH; Tang JW; Lai KP; Fu SC; Leung WT; Lai KM Appl Microbiol Biotechnol; 2018 Jul; 102(14):6257-6267. PubMed ID: 29808326 [TBL] [Abstract][Full Text] [Related]
58. Conditioning of the membrane fatty acid profile of Escherichia coli during periodic temperature cycling. Ivancic T; Vodovnik M; Marinsek-Logar R; Stopar D Microbiology (Reading); 2009 Oct; 155(Pt 10):3461-3463. PubMed ID: 19608610 [TBL] [Abstract][Full Text] [Related]
59. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Sawant N; Singh H; Appukuttan D Mol Biotechnol; 2022 Apr; 64(4):373-387. PubMed ID: 34796451 [TBL] [Abstract][Full Text] [Related]
60. [A temperature-inducible Targetron system for efficient gene inactivation in Escherichia coli]. Zhao X; Cheng Y; Wu C; Ren W; Rao F; Zhou Q; Cui G; Qi X; Hong W Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1659-1671. PubMed ID: 32924364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]