BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22691450)

  • 1. Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique.
    Morshed N; Chetty M; Nguyen XV
    BMC Syst Biol; 2012 Jun; 6():62. PubMed ID: 22691450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating time-delays in S-System model for reverse engineering genetic networks.
    Chowdhury AR; Chetty M; Vinh NX
    BMC Bioinformatics; 2013 Jun; 14():196. PubMed ID: 23777625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.
    Li Y; Chen H; Zheng J; Ngom A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):792-803. PubMed ID: 26336144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSCVFNT: Inference of Time-Delayed Gene Regulatory Network Based on Complex-Valued Flexible Neural Tree Model.
    Yang B; Chen Y; Zhang W; Lv J; Bao W; Huang DS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive inference of time-delayed gene regulation by network deconvolution.
    Chen H; Mundra PA; Zhao LN; Lin F; Zheng J
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S6. PubMed ID: 25521243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory network modeling via global optimization of high-order dynamic Bayesian network.
    Xuan NV; Chetty M; Coppel R; Wangikar PP
    BMC Bioinformatics; 2012 Jun; 13():131. PubMed ID: 22694481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks.
    Liu W; Rajapakse JC
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):37. PubMed ID: 30953534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    García-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. bLARS: An Algorithm to Infer Gene Regulatory Networks.
    Singh N; Vidyasagar M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):301-14. PubMed ID: 27045829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data.
    Kim S; Imoto S; Miyano S
    Biosystems; 2004 Jul; 75(1-3):57-65. PubMed ID: 15245804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach.
    Shi M; Shen W; Wang HQ; Chong Y
    IET Syst Biol; 2016 Dec; 10(6):252-259. PubMed ID: 27879480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Gene Regulatory Networks Using Variational Bayesian Inference in the Presence of Missing Data.
    Liu Q; Li J; Dong M; Liu M; Chai Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):399-409. PubMed ID: 35061589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.
    Grzegorczyk M; Husmeier D
    Stat Appl Genet Mol Biol; 2012 Jul; 11(4):. PubMed ID: 22850067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network.
    Chen H; Maduranga DAK; Mundra PA; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis.
    Kaleta C; Göhler A; Schuster S; Jahreis K; Guthke R; Nikolajewa S
    BMC Syst Biol; 2010 Aug; 4():116. PubMed ID: 20718955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.