These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 22691453)

  • 1. Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression.
    Ota KT; Duman RS
    Neurobiol Dis; 2013 Sep; 57():28-37. PubMed ID: 22691453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior.
    Schmidt HD; Duman RS
    Behav Pharmacol; 2007 Sep; 18(5-6):391-418. PubMed ID: 17762509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression.
    Licznerski P; Duman RS
    Neuroscience; 2013 Oct; 251():33-50. PubMed ID: 23036622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural basis of major depressive disorder: Beyond monoamine hypothesis.
    Boku S; Nakagawa S; Toda H; Hishimoto A
    Psychiatry Clin Neurosci; 2018 Jan; 72(1):3-12. PubMed ID: 28926161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression.
    Masi G; Brovedani P
    CNS Drugs; 2011 Nov; 25(11):913-31. PubMed ID: 22054117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver X receptor β in the hippocampus: A potential novel target for the treatment of major depressive disorder?
    Peng Z; Deng B; Jia J; Hou W; Hu S; Deng J; Lin W; Hou L; Sang H
    Neuropharmacology; 2018 Jun; 135():514-528. PubMed ID: 29654801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression.
    Hercher C; Turecki G; Mechawar N
    J Psychiatr Res; 2009 Jul; 43(11):947-61. PubMed ID: 19233384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment.
    Warner-Schmidt JL; Duman RS
    Hippocampus; 2006; 16(3):239-49. PubMed ID: 16425236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P2X7 Receptors Drive Spine Synapse Plasticity in the Learned Helplessness Model of Depression.
    Otrokocsi L; Kittel Á; Sperlágh B
    Int J Neuropsychopharmacol; 2017 Oct; 20(10):813-822. PubMed ID: 28633291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs.
    Quesseveur G; Gardier AM; Guiard BP
    Curr Drug Targets; 2013 Oct; 14(11):1277-94. PubMed ID: 24020973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.
    Qiao H; An SC; Xu C; Ma XM
    Brain Res; 2017 May; 1663():29-37. PubMed ID: 28284898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential roles of zinc in the pathophysiology and treatment of major depressive disorder.
    Swardfager W; Herrmann N; McIntyre RS; Mazereeuw G; Goldberger K; Cha DS; Schwartz Y; Lanctôt KL
    Neurosci Biobehav Rev; 2013 Jun; 37(5):911-29. PubMed ID: 23567517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals - a proof of concept study.
    Sheldrick A; Camara S; Ilieva M; Riederer P; Michel TM
    Eur Psychiatry; 2017 Oct; 46():65-71. PubMed ID: 29102768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketamine and Ro 25-6981 Reverse Behavioral Abnormalities in Rats Subjected to Dietary Zinc Restriction.
    Pochwat B; Domin H; Rafało-Ulińska A; Szewczyk B; Nowak G
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32640759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response.
    Aleksandrova LR; Wang YT; Phillips AG
    Neurosci Biobehav Rev; 2019 Oct; 105():1-23. PubMed ID: 31336112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engaging homeostatic plasticity to treat depression.
    Workman ER; Niere F; Raab-Graham KF
    Mol Psychiatry; 2018 Jan; 23(1):26-35. PubMed ID: 29133952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal neuroplasticity in major depressive disorder.
    Malykhin NV; Coupland NJ
    Neuroscience; 2015 Nov; 309():200-13. PubMed ID: 25934030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims.
    Rafalo-Ulinska A; Piotrowska J; Kryczyk A; Opoka W; Sowa-Kucma M; Misztak P; Rajkowska G; Stockmeier CA; Datka W; Nowak G; Szewczyk B
    J Psychiatr Res; 2016 Dec; 83():220-229. PubMed ID: 27661418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural plasticity and tianeptine: cellular and molecular targets.
    McEwen BS; Magarinos AM; Reagan LP
    Eur Psychiatry; 2002 Jul; 17 Suppl 3():318-30. PubMed ID: 15177088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review.
    Li A; Yau SY; Machado S; Wang P; Yuan TF; So KF
    CNS Neurol Disord Drug Targets; 2019; 18(4):294-306. PubMed ID: 30848219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.