BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22691785)

  • 1. Expression, purification, crystallization and preliminary crystallographic studies of Rhagium inquisitor antifreeze protein.
    Hakim A; Thakral D; Zhu DF; Nguyen JB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 May; 68(Pt 5):547-50. PubMed ID: 22691785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of an insect antifreeze protein reveals ordered waters on the ice-binding surface.
    Ye Q; Eves R; Campbell RL; Davies PL
    Biochem J; 2020 Sep; 477(17):3271-3286. PubMed ID: 32794579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an insect antifreeze protein and its implications for ice binding.
    Hakim A; Nguyen JB; Basu K; Zhu DF; Thakral D; Davies PL; Isaacs FJ; Modis Y; Meng W
    J Biol Chem; 2013 Apr; 288(17):12295-304. PubMed ID: 23486477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor.
    Kristiansen E; Ramløv H; Højrup P; Pedersen SA; Hagen L; Zachariassen KE
    Insect Biochem Mol Biol; 2011 Feb; 41(2):109-17. PubMed ID: 21078390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperactive antifreeze proteins from longhorn beetles: some structural insights.
    Kristiansen E; Wilkens C; Vincents B; Friis D; Lorentzen AB; Jenssen H; Løbner-Olesen A; Ramløv H
    J Insect Physiol; 2012 Nov; 58(11):1502-10. PubMed ID: 23000739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of hemolymph antifreeze proteins from larvae of the longhorn beetle Rhagium inquisitor (L.).
    Kristiansen E; Ramløv H; Hagen L; Pedersen SA; Andersen RA; Zachariassen KE
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Sep; 142(1):90-7. PubMed ID: 15993638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of hyperactive, repetitive antifreeze proteins in beetles.
    Graham LA; Qin W; Lougheed SC; Davies PL; Walker VK
    J Mol Evol; 2007 Apr; 64(4):387-98. PubMed ID: 17443386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix.
    Lin FH; Davies PL; Graham LA
    Biochemistry; 2011 May; 50(21):4467-78. PubMed ID: 21486083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax.
    Friis DS; Kristiansen E; von Solms N; Ramløv H
    FEBS Lett; 2014 May; 588(9):1767-72. PubMed ID: 24681101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).
    Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A
    Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into ice growth and melting modifications by antifreeze proteins.
    Bar-Dolev M; Celik Y; Wettlaufer JS; Davies PL; Braslavsky I
    J R Soc Interface; 2012 Dec; 9(77):3249-59. PubMed ID: 22787007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifreeze proteins in the Antarctic springtail, Gressittacantha terranova.
    Hawes TC; Marshall CJ; Wharton DA
    J Comp Physiol B; 2011 Aug; 181(6):713-9. PubMed ID: 21399953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An open source cryostage and software analysis method for detection of antifreeze activity.
    Buch JL; Ramløv H
    Cryobiology; 2016 Jun; 72(3):251-7. PubMed ID: 27041219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.