These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22691785)
21. Antifreeze proteins enable plants to survive in freezing conditions. Gupta R; Deswal R J Biosci; 2014 Dec; 39(5):931-44. PubMed ID: 25431421 [TBL] [Abstract][Full Text] [Related]
22. Peptide backbone circularization enhances antifreeze protein thermostability. Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252 [TBL] [Abstract][Full Text] [Related]
23. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein. Petit-Haertlein I; Blakeley MP; Howard E; Hazemann I; Mitschler A; Haertlein M; Podjarny A Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Apr; 65(Pt 4):406-9. PubMed ID: 19342793 [TBL] [Abstract][Full Text] [Related]
24. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
25. Salt-induced enhancement of antifreeze protein activity: a salting-out effect. Kristiansen E; Pedersen SA; Zachariassen KE Cryobiology; 2008 Oct; 57(2):122-9. PubMed ID: 18703038 [TBL] [Abstract][Full Text] [Related]
26. Isolation of an antifreeze peptide from the Antarctic sponge Homaxinella balfourensis. Wilkins SP; Blum AJ; Burkepile DE; Rutland TJ; Wierzbicki A; Kelly M; Hamann MT Cell Mol Life Sci; 2002 Dec; 59(12):2210-5. PubMed ID: 12568347 [TBL] [Abstract][Full Text] [Related]
27. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
28. Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations. Kozuch DJ; Stillinger FH; Debenedetti PG J Chem Theory Comput; 2020 Dec; 16(12):7866-7873. PubMed ID: 33201707 [TBL] [Abstract][Full Text] [Related]
29. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
30. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
31. Purification and structure analysis of antifreeze proteins from Ammopiptanthus mongolicus. Fei YB; Cao PX; Gao SQ; Wang B; Wei LB; Zhao J; Chen G; Wang BH Prep Biochem Biotechnol; 2008; 38(2):172-83. PubMed ID: 18320468 [TBL] [Abstract][Full Text] [Related]
32. The basis for hyperactivity of antifreeze proteins. Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111 [TBL] [Abstract][Full Text] [Related]
33. Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Do H; Lee JH; Lee SG; Kim HJ Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jul; 68(Pt 7):806-9. PubMed ID: 22750870 [TBL] [Abstract][Full Text] [Related]
34. A 9 kDa antifreeze protein from the Antarctic springtail, Gomphiocephalus hodgsoni. Hawes TC; Marshall CJ; Wharton DA Cryobiology; 2014 Aug; 69(1):181-3. PubMed ID: 25025820 [TBL] [Abstract][Full Text] [Related]
35. Crystallization and preliminary X-ray crystallographic analysis of the surE protein from Thermotoga maritima. Kwak JE; Ha KS; Lee JY; Im YJ; Park SH; Eom SH; Suh SW Acta Crystallogr D Biol Crystallogr; 2001 Apr; 57(Pt 4):612-3. PubMed ID: 11264598 [TBL] [Abstract][Full Text] [Related]
36. Crystallization and preliminary X-ray crystallographic analysis of Thermotoga maritima CheA P3-P4-P5 domains in complex with CheW. Park S; Kim KY; Kim S; Crane BR Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jun; 68(Pt 6):713-5. PubMed ID: 22684078 [TBL] [Abstract][Full Text] [Related]
37. Crystallization and preliminary X-ray analysis of insect antifreeze protein from the beetle Tenebrio molitor. Liou YC; Davies PL; Jia Z Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):354-6. PubMed ID: 10713525 [TBL] [Abstract][Full Text] [Related]
38. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
39. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
40. Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities. Phippen SW; Stevens CA; Vance TD; King NP; Baker D; Davies PL Biochemistry; 2016 Dec; 55(49):6811-6820. PubMed ID: 27951652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]