BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22691961)

  • 1. PredSulSite: prediction of protein tyrosine sulfation sites with multiple features and analysis.
    Huang SY; Shi SP; Qiu JD; Sun XY; Suo SB; Liang RP
    Anal Biochem; 2012 Sep; 428(1):16-23. PubMed ID: 22691961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of tyrosine sulfation with mRMR feature selection and analysis.
    Niu S; Huang T; Feng K; Cai Y; Li Y
    J Proteome Res; 2010 Dec; 9(12):6490-7. PubMed ID: 20973568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating support vector machine for identifying protein tyrosine sulfation sites.
    Chang WC; Lee TY; Shien DM; Hsu JB; Horng JT; Hsu PC; Wang TY; Huang HD; Pan RL
    J Comput Chem; 2009 Nov; 30(15):2526-37. PubMed ID: 19373826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein secondary structure prediction using a multi-modal BP method.
    Qu W; Sui H; Yang B; Qian W
    Comput Biol Med; 2011 Oct; 41(10):946-59. PubMed ID: 21880310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prediction of palmitoylation site locations using a multiple feature extraction method.
    Shi SP; Sun XY; Qiu JD; Suo SB; Chen X; Huang SY; Liang RP
    J Mol Graph Model; 2013 Mar; 40():125-30. PubMed ID: 23419766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy.
    Yang ZR
    BMC Bioinformatics; 2009 Oct; 10():361. PubMed ID: 19874585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-based prediction of protein interaction sites with an integrative method.
    Chen XW; Jeong JC
    Bioinformatics; 2009 Mar; 25(5):585-91. PubMed ID: 19153136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: an approach from discrete wavelet transformation.
    Qiu JD; Sun XY; Suo SB; Shi SP; Huang SY; Liang RP; Zhang L
    Biochimie; 2011 Jul; 93(7):1132-8. PubMed ID: 21466835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.
    Wang Y; Xue ZD; Shi XH; Xu J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):574-80. PubMed ID: 16844090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.