These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2269227)

  • 21. Structure-toxicity relationships for aminoalkanols: a comparison with alkanols and alkanamines.
    Sinks GD; Carver TA; Schultz TW
    SAR QSAR Environ Res; 1998; 9(3-4):217-28. PubMed ID: 9933960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute aquatic toxicity of alkyl phenol ethoxylates.
    Schüürmann G
    Ecotoxicol Environ Saf; 1991 Apr; 21(2):227-33. PubMed ID: 2065634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols.
    Cronin MT; Schultz TW
    Sci Total Environ; 1997 Sep; 204(1):75-88. PubMed ID: 9299768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of the narcosis target lipid model to algal toxicity and deriving predicted-no-effect concentrations.
    McGrath JA; Parkerton TF; Di Toro DM
    Environ Toxicol Chem; 2004 Oct; 23(10):2503-17. PubMed ID: 15511111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of QSARs in risk management of existing chemicals.
    Verhaar HJ; van Leeuwen CJ; Bol J; Hermens JL
    SAR QSAR Environ Res; 1994; 2(1-2):39-58. PubMed ID: 8790639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative structure-toxicity relationships and volume fraction analyses for selected esters.
    Jaworska JS; Hunter RS; Schultz TW
    Arch Environ Contam Toxicol; 1995 Jul; 29(1):86-93. PubMed ID: 7794017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism-based comparisons of acute toxicities elicited by industrial organic chemicals in procaryotic and eucaryotic systems.
    Jaworska JS; Schultz TW
    Ecotoxicol Environ Saf; 1994 Nov; 29(2):200-13. PubMed ID: 7533711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals.
    Dearden JC; Cronin MT; Dobbs AJ
    Chemosphere; 1995 Jul; 31(1):2521-8. PubMed ID: 7670864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening.
    Escher BI; Glauch L; König M; Mayer P; Schlichting R
    Chem Res Toxicol; 2019 Aug; 32(8):1646-1655. PubMed ID: 31313575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of critical body residue data for acute narcosis in aquatic organisms.
    McCarty LS; Arnot JA; Mackay D
    Environ Toxicol Chem; 2013 Oct; 32(10):2301-14. PubMed ID: 23720389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity.
    Schultz TW; Lin DT; Wesley SK
    Qual Assur; 1992 Feb; 1(2):132-43. PubMed ID: 1344212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comment on "Discriminating toxicant classes by mode of action: 3. Substructure indicators" (M. Nendza and M. Müller, SAR QSAR Environ. Res. 18 155 (2007)).
    Von der Ohe PC; Kühne R; Ebert RU; Schüürmann G
    SAR QSAR Environ Res; 2007; 18(7-8):621-4; author reply 625-8. PubMed ID: 18038362
    [No Abstract]   [Full Text] [Related]  

  • 37. Definition of the structural domain of the baseline non-polar narcosis model for Tetrahymena pyriformis.
    Ellison CM; Cronin MT; Madden JC; Schultz TW
    SAR QSAR Environ Res; 2008; 19(7-8):751-83. PubMed ID: 19061087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenol mechanism of toxic action classification and prediction: a decision tree approach.
    Ren S
    Toxicol Lett; 2003 Oct; 144(3):313-23. PubMed ID: 12927349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus.
    Wang X; Wang Y; Chunsheng Y; Wang L; Han S
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):29-35. PubMed ID: 11706365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.