BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22692603)

  • 1. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement.
    Cai S; Xi J; Chua CK
    Methods Mol Biol; 2012; 868():45-55. PubMed ID: 22692603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling in the design and evaluation of scaffolds for orthopaedics applications.
    Swieszkowski W; Kurzydlowski KJ
    Methods Mol Biol; 2012; 868():155-82. PubMed ID: 22692611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Digital modeling for the individual mandibular 3D mesh scaffold based on 3D printing technology].
    Yan R; Luo D; Qin X; Li R; Rong Q; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 May; 51(5):280-5. PubMed ID: 27220387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH; Park IK; Kim JM; Lee JH
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications.
    Peyrin F; Mastrogiacomo M; Cancedda R; Martinetti R
    Biotechnol Bioeng; 2007 Jun; 97(3):638-48. PubMed ID: 17089389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis.
    Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA
    Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].
    Wei X; Dong F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Dec; 25(12):1508-12. PubMed ID: 22242356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New paradigms in hierarchical porous scaffold design for tissue engineering.
    Yoo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1759-72. PubMed ID: 23827634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.